نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

”M.SC” پایان نامه برای دریافت درجه کارشناسی ارشد

مهندسی شیمی- طراحی فرایند

عنوان:

مدلسازی و شبیه سازی نشست کک در مبدل خط انتقال (Transfer line exchanger) واحد اولفین

چکیده

شکست حرارتی هیدروکربنها یکی از فرایندهای مهم در صنعت پتروشیمی می باشد که توسط این فرایند، اولفین ها بویژه اتیلن بعنوان محصول، تولید می شود. در این فرایند پیوندهای اولیه این مواد هیدروکربنی در درجه حرارتهای بالا شکسته شده و پیوندهای جدیدی جایگزین آن می شوند. برای جلوگیری از انجام واکنشهای ثانویه که منجر به نشست کک در این گونه واحدها می شود، جریان خروجی از راکتورهای شکست حرارتی بایستی سریعا سرد شود. این عمل در مبدلهای خط انتقال (TLE) انجام می شود. ازخصوصیات ویژه این مبدلها می توان از بالا بودن سطح تبادل حرارتی، سرعت بسیار زیاد، زمان اقامت کم در مبدل و تولید بخار با فشار بالارا نام برد. از مهمترین مسائل در فرآیند شکست حرارتی هیدروکربنها، نشست و تشکیل لایه کک در دیواره داخلی راکتور و مبدل خط انتقال (TLE) می باشد. مکانیزم تشکیل کک در مبدل (TLE) بدلیل بالا بودن دمای گازهای شکست حرارتی و در اثر ادامه این واکنشها اتفاق می افتد. در این پروژه در ادامه مدلسازی و شبیه سازی مبدلهای خط انتقال (TLE) در واحدهای اولفین، با ارائه یک مدل ریاضی، شبیه سازی نشست کک در این مبدل با در نظر گرفتن یک مدل جدید برای تولید کک انجام و به صورت یک نرم افزار کامپیوتری ارائه شده است. قابلیتهای نرم افزار مورد نظر شامل پیش بینی زمان عملکرد مبدل، توزیع درجه حرارت گاز و افت فشار در طول مبدل می باشد. در مدل مورد نظر برای تولید کک، هفت ماده را بعنوان عوامل پیشتاز کک در نظر می گیرد که عبارتند از:

– اتیلن و پروپیلن از خانواده اولفینها

– بوتادین از خانواده دی اولفینها

– بنزن، تولوئن، زایلن و استایرن از خانواده آروماتیکها

C2H4->Coke   C3H6->Coke   C4H6->Coke   C6H6->Coke

C7H8->Coke    C8H10->Coke   C8H8->Coke

در این مدل تمام واکنشها بصورت واکنشهای درجه اول در نظر گرفته شده و ثانیا تمامی ثابتهای سرعت از طریق مقادیر ثابتهای نسبی تولید کک به هم مربوط شده اند.

در فصول مختلف پایان نامه موارد ذیل بطور مفصل بررسی و تجزیه و تحلیل می شود:

– در فصل اول کلیات مربوط به واحد اولفین از جمله فرایندهای شکست حرارتی، جایگاه مبدلهای TLE در این واحد و کوره های شکست حرارتی بررسی می شوند.

– در فصل دوم کلیات مربوط به کک و نحوه تشکیل آن مشخص می شود.

– در فصل سوم مکانیسم واکنش های شکست حرارتی و نشست کک تجزیه و تحلیل شده و از بین روشها و مکانیسم های موجود (از جمله رادیکالی، ملکولی و…) روش مناسب انتخاب شده است. با انتخاب مکانیزم برتر، در فصل چهارم معادلات حاکم بر مدل معرفی خواهندشد و مدلسازی فرایند انجام می شود. در فصل پنجم حل مدل و برنامه کامپیوتری نوشته شده ارائه میگردد و با بهره گیری از زبان برنامه نویسی  Matlab نتایج برنامه بدست می آیند.

در پایان نتایج بدست آمده با اطلاعات واحد مقایسه می شوند و پیشنهادات لازم و مفید برای کارهای تکمیلی پروژه ارائه می شود.

مقدمه:

صنایع پتروشیمی به دلیل تولید مواد با ارزش افزوده بالا و تهیه مواد اولیه صنایع دیگر مورد توجه اکثر کشورها قرار گرفته است. در این صنایع از نفت و گاز طبیعی محصولات باارزشی همچون اولفین ها مانند پروپیلن، اتیلن و نیز وینیل استات، اکسید اتیلن و هزاران ماده ارزشمند دیگر تولید می شود که هرکدام به نوبه خود ماده اولیه برای سایر قسمتها و واحدهای صنعتی پایین دستی می باشند.

به لحاظ این که مواد اولفینی، ساختار اولیه برای مواد پلیمری هستند، ایجاد زنجیره های سنگین هیدروکربنی در ادامه عملیات شکست حرارتی امری اجتناب ناپذیر است.

برای مقابله با واکنش های ثانویه می بایست جریان خروجی از راکتورسریعاً خنک شود و به درجه حرارتی که از توقف واکنش های ثانویه جلوگیری نماید، برسد. در نتیجه استفاده از مبدلهای خط تبادل که اختصارا TLE نامیده می شود در واحد ضرورت پیدا می کند. پیش از این در دهه های گذشته، عملیات سرد کردن جریان خروجی از راکتور شکست حرارتی بوسیله تزریق روغن و یا آب انجام می شد که به روشهای سرد کردن مستقیم  معروفند. این روش علاوه بر افزایش هزینه های جداسازی، اتلاف حرارتی زیادی نیز به همراه داشت. استفاده از این گونه مبدلها، علاوه بر کاهش هزینه های جداسازی، تولید بخار با فشار بالا (قابل استفاده در توربین ها) را نیز به همراه خواهد داشت که در کاهش هزینه های واحد سهم بسزایی دارد.

بی تردید مدل سازی وشبیه سازی فرآیند ها در واحدهای صنعتی از اهمیت خاصی برخوردار می باشد. امروزه شبیه سازی به معنای استفاده از کامپیوتر درحل مدلهای ریاضی سیستم است که ابزار کار طراح می باشد و طراح را قادر به مطالعه فرآیند می کند. مزیت اصلی مدل سازی و شبیه سازی در این است که با صرف کمترین هزینه و درکوتاه ترین مدت زمان، می توان با دقت بالائی همان نتایج تجربی را بدست آورد بدون آن که تغییری در واحد صنعتی داده شود.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 45
|
امتیاز مطلب : 5
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

پایان نامه برای دریافت درجه کارشناسی ارشد

مهندسی شیمی – مهندسی محیط زیست

عنوان:

مدلسازی و شبیه سازی فیلتر بیولوژیکی برای حذف آلاینده های آلی

چکیده:

امروزه بخشی عمده ای از آلودگی هوا ناشی از تبخیر ترکیبات آلی فرار (VOCs) می باشد. انتشار این مواد در هوا علاوه بر تولید بو خطراتی برای اکوسیستم و سلامتی انسان ها، سالانه مبالغ زیادی هزینه در بردارند. استفاده از فیلترهای بیولوژیکی (بیوفیلترها) یکی از مهمترین روش ها برای تصفیه حجم زیادی از هوا با غلظت های پایین آلاینده می باشد. اساس بیوفیلتراسیون، مصرف و اکسیداسیون (تجزیه بیولوژیکی) ترکیبات آلاینده توسط میکروارگانیسم ها و تولید دی اکسید کربن، آب و بیومس است. به دلیل موجود بودن عامل فعال بیولوژیکی که غالبا گونه های خاص باکتریایی و تا حدودی قارچ ها و مخمرها هستند راندمان بیوفیلترها در مقایسه با انواع فیلترهای دیگر که عمل جذب فقط با استفاده از ماده ای چون کربن فعال یا بنتونیت صورت می گیرد بسیار بالاتر است. از مزایای دیگر بیوفیلترها، پایین بودن هزینه ها و راهبری نسبتا آسان آنهاست. در این تحقیق با حل مدل ریاضی مربوط به یک بیوفیلتر خاص و سپس شبیه سازی آن تاثیر عواملی مانند: طول بیوفیلتر، مواد پرکننده فیلتر، فعال و غیرفعال بودن سیستم از لحاظ بیولوژیکی و مدت زمان عملکرد بیوفیلتر بر روی حذف متانول مورد بررسی قرار گرفته است. نتایج به دست آمده نشان می دهند که در طی راه اندازی اولیه یک بیوفیلتر، جذب سطحی آلاینده ها توسط مواد تشکیل دهنده فیلتر غالب است ولی بعد از مدتی که این مواد با آلاینده ها اشباع شدند، فرایندهای بیولوژیکی برای حذف تسلط می یابند و بارگیری آلاینده معادل با تجزیه بیولوژیکی به علاوه تخلیه می شود. همچنین بیوفیلترهای حاوی کربن فعال گرانولی ((granular activated carbon (GAC)، کمپوست / خاک دیاتومه و کمپوست به ترتیب به طولانی ترین زمان نیاز دارند تا به حالت پایدار برسند و در این مدت زمان، پروفیل های گرادیان غلظت تغییری زیادی نمی کند. به هرحال (GAC) جاذب بهتری برای آلاینده است، در حالی که کمپوست محیط بهتری را برای رشد و فعالیت میکروبی فراهم می کند.

فصل اول: آلودگی هوا و روش های تصفیه آن

1-1- مقدمه

آلودگی هوا، یکی از پدیده های زندگی مدرن امروزی و ناشی از پسماندهایی است که در اثر فعالیت های شبانه روزی بشر به وجود می آید. این پسماندها ناشی از تولید مواد غذایی، صنعتی، کالاهای مختلف و انرژی است. شاید بتوان علل اصلی آلودگی هوا را در احتراق ناقص جستجو کرد که طی آن، بر اثر عدم سوخت رسانی کامل و یا نسبت نامناسب هوا و سوخت، پس از احتراق، موادی نظیر منواکسید کربن، اکسید سولفور، اکسید نیتروژن، ذرات خاکستر و یا هیدروکربورهایی که سوخته نشده وارد هوا می شود. از آنجایی که این مواد بر روی کل حیات اثر سوء می گذارند، به عنوان آلاینده های هوا از آنها یاد می شود.

هوای آلوده، پدیده ای است که از ترکیب یا اختلاط هوا و مواد یا ذرات خاصی، در مدت زمان معینی تولید می شود و در صورت تداوم، بیماری ها یا اختلالاتی برای انسان، حیوانات و گیاهان ایجاد می کند و به میزان قابل ملاحظه ای، زندگی بشر را به مخاطره می اندازد.

هوای پاک به هوایی اطلاق می شود که عاری از مواد و ذرات مضر به حال انسان، حیوانات و گیاهان در درجه اول، و سایر موجودات و تولیدات در مرحله بعد باشد.

آلاینده های موجود در هوا دو نوعند: اولیه (Primary) و ثانویه (Secondary).

آلاینده های اولیه موادی هستند که در اثر منابع آلوده کننده به هوای محیط وارد می گردند. مانند: اکسیدهای سولفور، اکسیدهای نیتروژن، سولفید هیدروژن، منواکسید کربن، سرب، ذرات آلوده یا مواد معلق (گرد و خاک، غبار، دودهای سیاه)، هیدروکربورها، ترکیبات آلی فرار (VOCs) و…

آلاینده های ثانویه به موادی اطلاق می شود که در اثر فعل و انفعال موجود در هوای اطراف زمین تشکیل می گردند، بعضی از این فعل و انفعالات را می توان در جدول 1-1 مشاهده نمود.

برای جلوگیری از آلودگی و تخریب محیط زیست نیاز به آگاهی و مشارکت عمومی است. بنابراین باید بیشتر روش هایی مورد بهره برداری قرار گیرند که در کشورهای پیشرفته مورد استفاده قرار گرفته و جنبه کاربردی آن به اثبات رسیده باشد.

در این پروژه چون به مدلسازی بیوفیلتر مورد استفاده جهت حذف متانول پرداخته شده و متانول جزء گروه ترکیبات آلی فرار (VOCs) است پس تنها به شرح مختصری درباره این گروه از آلاینده ها می پردازیم.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 45
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

” M.SC ” پایان نامه برای دریافت درجه کارشناسی ارشد

مهندسی شیمی

عنوان:

آنالیز ریسک پذیری مخازن گازهای سمی در مجتمع پتروشیمی شیراز و اثرات مختلف آن بر منطقه

چکیده:

آمونیاک ماده ای بسیار سمی و خطرناک از نظر جنبه های بهداشتی و سلامتی است و واحدهای تولید آمونیاک در میان پرمخاطره ترین واحدهای صنایع پتروشیمیایی قرار دارند. از این رو پرداختن به ایمنی و مدیر یت ریسک این واحدها همواره مورد توجه بوده است.  برای مدیریت ریسک واحدهای فرآیندی، علاوه بر محاسبه احتمال رخداد حوادث نامطلوب نیاز به محاسبه شدت تأثیرات و عواقب این حادثه نیز هست. تا بدین وسیله، ریسک اولویت محاسبه شدت عواقب و پیامدهای حوادث احتمال تحت عنوان آنالیز پیامد شناخته می شود. در این پروژه کوشش شده است با استفاده از روش نوین آنالیز پیامد، عواقب نشتی محتمل آمونیاک از مخازن نگهداری، در یک مجتمع پتروشیمی شناسایی و تحلیل شود. این تحلیل در ارزیابی ریسک این واحد و نیز ارائه طرحی برای واکنش سریع در بر ابر حوادث، مورد استفاده قرار می گیرد.

مقدمه:

داشتن زندگی عاری از خطر آرزو و هدف همۀ مردم در همۀ اعصار بوده است. زیرا میل به ایمنی و امنیت بخش تفکیک ناپذیری از ماهیت همۀ انسانها می باشد. از طرفی دیگر بشر همواره در تلاش برای بهبود زندگی و راحتی بیشتر بوده و در این راه سعی کرده با ایجاد تغییر در طبیعت، متغیرهای آن را به خدمت خود در آورد که در این راه همواره با دست یابی به مواد، تجهیزات، دستگاهها و به عبارتی ساده تر به خدمت گرفتن فن آوری نوین و غیره و همان اندازه نیز با خطرات بیشتر و همچنین جدیدتری مواجه گردیده است.

ایدۀ ایمنی از همان سالهای نخست زندگی بشر شکل گرفت، انسانهای اولیه دلایل خوبی برای اتخاذ احتیاطات و تدابیر دفاعی داشتند آنها به دلیل عدم اطلاع از علل واقعی از خطرات طبیعی که در مجاورت خود داشتند می ترسیدند، وجود حیوانات وحشی یک منبع دائمی خطر در اطراف آنها به شمار می رفت، منابع غذایی محدود بود و… به همین دلایل انسانهای نخستین نیز همواره سعی در افزایش توانایی های دفاعی خود داشتند. آنها یاد گرفتند که خطرات را ارزیابی کنند و در مقابل آنها واکنش دفاعی نشان دهند ، بدون شک انسان های ماقبل تاریخ توانایی طرح و اجرای برنامه های ایمنی را داشتند. که این امر نقش حیاتی در زنده ماندن آنها ایفا کرد.

با گذشت زمان طرحهای ایمنی شکل اجتماعی به خود گرفت، برای تأمین نیازهای ایمنی مردم شروع به تطابق، کشف و اختراع وسایل جدید نمودند که مجموع این تلاش ها بر توانایی آنها در ایجاد و سرعت بخشیدن به تغییرات دلخواه افزوده است.

شواهد موجود نشان می دهد که انسان خیلی زود یاد گرفت با این گونه خطرات که بدلیل عدم مراقبت و حفاظت ناکافی و نامناسب در هنگام استفاده از تجهیزات و مواد مختلف رخ می دهد برخورد کرده و برای حذف یا به حداقل رساندن پیامدهای آنها ابزارهای کنترلی را به خدمت بگیرند، او آموخت که در هنگام مواجهه با ماهیتهای تهدید کننده، تغییراتی در رفتارهای اجتماعی خود ایجاد کند این تغییرات در راستایی بود که توسعه و پیشرفت را با عملکردی سودمند مطابق ساز د که گسترش ایمنی در برنامه های مختلف نمونه ای از این تطابق هاست و نهایتاً اینکه رسیدن به اصول ایمنی امروزی نتیجۀ قرنها تلاش و تجربۀ طاقت فرساست.

فصل اول: کلیات

1-1- هدف

با روند شتاب زده ای که از نیمۀ دوم قرن بیستم در توسعه و گسترش سیستمهای حساس و پیچیده بوجود آمد این ایده قوت یافت که برای ارزیابی ایمنی سیستمها دیگر نمی توان منتظر وقوع حوادث شد تا بتوان از طریق تجزیه و تحلیل آن نقاط ضعف سیستم را شناسائی و برطرف کرد و لذا سعی گردید که روشهایی برای ارزیابی ایمنی ابداع شود که قادر باشند پتانسیل وقوع خطر را قبل از عملیات سیستم شناسائی نمایند که نتیجۀ این تلاش به شکل گرفتن علم ایمنی سیستمها منجر شد که براساس یک برنامۀ طرح ریزی شده، قانونمند و سازماندهی شده و در قالب یک فرآیند “پیش گیرنده” قرار دارند.

از طرف دیگر با وجود همگامی گسترش صنایع با توسعه و تقویت علم ایمنی در کشورهای توسعه یافته، در کشور ما علیرغم تلاشهای زیادی که در راه گسترش صنایع مبذول گردیده است بُعد اساسی ایمنی بدست فراموشی سپرده شده یا حداقل به صورت سطحی بدان پرداخته شده است.

2-1- پیشینۀ تحقیق

تا قبل از سال 1940 میلادی، ایمنی به صورت کنترل خطرات آشکار در مراحل اولیۀ طراحی سیستم مطرح می شد.

یعنی طراحان متکی به روش سعی و خطا بودند. برای مثال این روش در صنعت هوانوردی به پرواز – تعمیر – پرواز معروف بود. بدین صورت که با استفاده از دانش موجود هواپیما طراحی می شد و به پرواز در می آمد تا اینکه مشکلات ظاهر می شد. سپس مسائل و
مشکلات برطرف شده و دوباره هواپیما به پرواز در می آمد. واضح است که این روش برای هواپیماهای با سرعت کم و ارزان قیمت کارساز بود، در حالی که مثلاً برای سلاحهای هسته ای و سفرهای فضایی قابل قبو ل نبود . زیرا پیامدهای حوادث مربوط به آنها بسیار شدید بود. روش سعی و خطا برای سیستمهایی که باید در لحظۀ شروع کار ایمن باشد، مناسب نبودند. از این رو بود که از آن به بعد برنامۀ ایمنی سیستم به عرصۀ ظهور درآمده و یا دقیق تر اینکه تکامل پیدا کرد. در واقع پروژه های مربوط به موشک و سیستمهای فضایی سبب رونق مهندسی ایمنی سیستم شدند.

در این سیستمها نیاز به روش جدید برای کنترل خطرات کاملاً آشکار شد. موشکهای بالستیک قاره پیما در سال 1960 میلادی اولین سیستمهایی بودند که برای آنها برنامۀ ایمنی سیستم به صورت رسمی و منظم پیدا شد . وزارت دفاع آمریکا 1966 میلادی اولین سند برنامۀ ایمنی سیستم را منتشر نمود. بدنبال آن ناسا نیز برنامۀ ایمنی سیستم را به صورت یکپارچه در عملیات فضایی بکار برد. بسیاری از موفقیتهای برنامه های فضایی مرهون پیاده سازی و اجرای برنامۀ ایمنی سیستم می باشد.

سرانجام استفاده از برنامۀ ایمنی سیستم در صنایع تجاری نیز معمول گشت. به طوری که امروزه این برنامه در نیروگاه های هسته ای، پالایشگاه ها و صنایع پتروشیمی کاربرد فراوان دارد. اولین بار در سال 1985 میلادی، انجمن مهندسین شیمی آمریکا اصول راهنمای
روشهای ارزیابی خطر را برای صنایع پتروشیمی ارائه نمودند. در این راهنما بسیاری از ابزارهای تجزیه و تحلیل ایمنی سیستم مطرح گردیده است.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 37
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

“M.Sc” سمینار برای دریافت درجه کارشناسی ارشد

مهندسی شیمی- فرایند

عنوان:

بررسی جداسازی LPG از جریانات گازی توسط فرایند غشایی

چکیده:

جداسازی گازها توسط فرآیندهای غشایی به سرعت در حال رشد میباشد. استفاده از غشاها برای جداسازی گازها از مخلوط هایشان عمدتاً بر اساس اختلاف تراوشپذیری ترکیبات از داخل آنها انجام میشود. فناوری جداسازی غشایی از مزایایی مانند مصرف کمتر انرژی و هزینه سرمایهگذاری پائین تر نسبت به روشهای معمول جداسازی برخوردار است. علاوه بر این، جداسازی غشایی فرآیندی نسبتاٌ ساده میباشد و به تجهیزات کم حجمتری نیاز دارد.

با توجه به مزایای قابل توجه فرآیندهای غشایی، میزان استفاده از آنها در زمینههای مختلف، طی سالهای اخیر روز به روز افزایش یافته است. از جدیدترین فرآیندهای غشایی، میتوان به بازیافت هیدروکربنهای سنگین با استفاده از غشاء اشاره کرد. بهکمک این فرآیند میتوان هیدروکربن های سنگین را با کارآیی بالا بازیافت کرد و به علاوه مقادیری گازهای سبک خالص مانند هیدروژن، نیتروژن و متان تولید نمود. از جمله کاربردهای فرآیندهای غشایی در این زمینه میتوان به خارج کردن ترکیبات سنگین از گازهای سوختی، بازیافت الفین از رزین در جریان خروجی از واحد پلی الفین، بازیافت میعانات گازی از جریان گاز طبیعی و بازیافت LPG اشاره کرد.

LPG ترکیبی از پروپان با فرمول شیمیایی C3H8 و بوتان با فرمول شیمیایی C4H10 می باشد. این ترکیب در دمای معمولی با افزایش فشار و یا در فشار معمولی با کاهش دما مایع میشود. LPG میتواند از گاز و یا نفت تولید شود. LPG یا در طول فرآیند استخراج از ترکیبات دیگر جدا میگردد و یا به عنوان یکی از محصولات پالایشگاه تولید میشود.

استفاده از LPG در سالهای اخیر به دلیل خصوصیات و مزایای آن افزایش چشمگیری داشته است. در زیر مزایای استفاده از LPG به اختصار آورده شده است:

– LPG از نظر اقتصادی بهصرفه است. سوختی تمیز، ایمن و اقتصادی است که از لحاظ قیمت از بسیاری ا ز سوختها نیز ارزانتر می باشد.

– مقدار کالری حاصل از احتراق LPG حدوداً 2,5 برابر سایر گازهاست. پس برای دستیابی به مقدار مشخصی انرژی در مقایسه با سایر گازها، LPG کمتری مصرف می شود.

– ذخیره سازی و انتقال LPG آسان است. سیلندرهای آن نسبتاً سبک بوده، حمل آن آسان است، جای کمی اشغال کرده و به وفور نیز در دسترس هستند. قابل ذکر است که سیلندرهای مورد استفاده در صنعت و یا در مصارف تجاری در اندازه های مختلفی ساخته میشوند. این سیلندرها میتوانند 19، 35، 47,5 کیلوگر LPG را در خود جای دهند. البته سیلندرهای مورداستفاده در منازل معمولا حاوی 15 کیلوگرم LPG هستند.

– در منازل نیز LPG سوختی مناسب است که از آن در زمینه های مختلف خصوصا به عنوان سوخت در پختن غذا استفاده میشود. این کاربرد به ویژه در مناطقی که فاقد لوله کشی گاز هستند، بسیار متداول میباشد. LPG شعلهای مناسب ایجاد می کند و برخلاف سایر سوخت ها مانند چوب و نفت حرارت اضافی تولید نمی کند.

– LPG با استانداردهای محیط زیست بسیار هماهنگ است. احتراق آن نسبتا کامل بوده و میزان آلودگی حاصل از آن در سطح بسیار پایینی است. این ویژگی باعث افزایش روز افزون استفاده از LPG به عنوان سوخت در وسایل نقلیه شده است.

– از آنجا که LPG پس از سوختن گازهای مونوکسیدکربن، اکسید نیتروژن و هیدروکربن های نسوخته بسیار کمی تولید می کند، انتشار گازهای گلخانه ای آن در مقایسه با سایر سوخت های فسیلی کمتر است.

– ماده ای که در صنعت به عنوان سوخت استفاده میشود، باید میزان سولفور آن کم بوده و نیازی به کنترل دقیق دمایی نداشته باشد، پس LPG میتواند سوختی مناسب در صنعت باشد.

– موتورهایی که با LPG کار می کنند، نسبت به موتورهای بنزینی راندمان بالاتری دارند. که این مساله مربوط به بالا بودن عدد اکتان پروپان می باشد.

– از آنجایی که LPG تحت فشار ذخیره و نگهداری میشود، هیچگونه پمپ و یا سیستم مکنده ای جهت جاری شدن آن نیازی نیست.

– نرخ افزایش قیمت LPG بسیار کندتر از بنزین است. این نکته در سال های اخیر تاثیر بسزایی در افزایش مصرف LPG به عنوان سوخت در اتومبیل ها داشته است.

LPG امروزه بطور گستردهای در منازل، مزارع، مراکز تجاری، صنعتی و حمل و نقل استفاده میشود. همچنین میتوان از LPG برای تولید نور و گرما نیز استفاده کرد. به دلیل کمبود CNG در بسیاری از کشورها از جمله هند، LPG به عنوان سوخت برتر شناخته شده و روز به روز میزان استفاده از آن افزایش مییابد. در حال حاضر، بیش از هزارانها وسیله نقلیه در جهان از LPG به عنوان سوخت استفاده می کنند، در استرالیا 200000، نیوزلند 50000، کانادا 140000، مکزیک 435000، کره 1600000و در آمریکا 500000 اتومبیل با LPG کار میکنند و این تعداد به دلایلی نظیر ایجاد آلودگی کمتر LPG و قیمت مناسبتر آن نسبت به سوختهای دیگر روز به روز در حال افزایش است. بازیابی LPG از جریان های گازی به دلایل ذیل مورد نیاز است:

1- روزانه مقادیر قابل ملاحظه ای از هیدروکربورهای با ارزش مانند LPG به دلیل عدم وجود امکانات جداسازی موثر به مسیر گازهای سوخت یا مشعل هدایت می شود. جداسازی غشایی LPG مانع از هدر رفتن این هیدروکربورها که دارای ارزش صنعتی و اقتصادی بالاتری نسبت به متان می باشند، می شود.

2- گرمای احتراق LPG بیشتر از متان و حد استاندارد خط لوله است. حذف LPG از جریان گاز موجب افزایش ایمنی می گردد.

3- حضور LPG جریان گاز موجب پایین آمدن عدد متان تا کمتر از حد مجاز آن (70 تا 80) و متعاقبا انفجار و گرفتگی موتورها و ژنراتورها می شود.

4- وجود مایعات گازی با جرم مولکولی بالاتر موجب ایجاد لخته های مایع شده که این خود باعث حل شدن جزئی و یا نرم شدن لوله ها و وسایل اندازه گیری پلاستیکی می شود.

5- جداسازی غشایی LPG سبب کاهش هزینه خالص سازی در جریان های پایین دستی می شود.

6- جداسازی غشایی LPG موجب کاهش هزینه سرمایه گذاری، مصرف انرژی و همچنین فضای لازم به دلیل استفاده از تجهیزات کم حجم تر می شود.

این مستند گزارش سمینار با عنوان بررسی جداسازی LPG از جریانات گازی توسط فرایندهای غشایی میباشد. گزارش تهیه شده شامل شش فصل است. در فصل اول کلیات تحقیق توضیح داده شده است فصل دوم به معرفی LPG و کاربردهای آن اختصاص شده است. در فصل سوم توضیحاتی در مورد انواع غشاهای موجود، کاربردهای جداسازی غشایی گاز و انواع فرآیندهای غشایی در جداسازی گازها که دفع هیدرو کربن های سنگین توسط غشاء یکی از آنهاست، داده شده است. مکانیسم های انتقال گاز در غشاء و مدل های تشریح کننده آن در فصل چهارم مورد بررسی قرار گرفته است.

فصل پنجم تحت عنوان مدلهای تشریح کننده رفتار غشاهای پلیمری حاوی مطالبی در مورد مدل های تشریح کننده انتقال گاز در پلیمرها شامل مدل های میکروسکوپی و مولکولی و عوامل تأثیر گذار بر انتقال گاز در غشاهای پلیمری شامل طبیعت غشاء، طبیعت کراس لینک، پدیده پلاستیسیزاسیون، طبیعت نفوذکننده، پرکننده ها و دما می باشد.

در فصل ششم کلیه غشاهای پلیمری که برای جداسازی LPG از جریان گازی مورد استفاده قرار گرفته است، بررسی گردیده و غشای مناسب انتخاب شده است.

فصل آخر این گزارش، تحت عنوان نتیجه گیری و پیشنهادات، شامل ارائه نتایج حاصل از این تحقیق به منظور کاربرد عملی و همچنین پیشنهاداتی به منظور ادامه بررسی و تحقیق در زمینه جداسازی LPG از جریانهای گازی توسط فرایندهای غشایی می باشد.

مقدمه:

امروزه به دلیل افزایش مصرف انرژی و ازدیاد قیمت روز افزون سوخت و فرآورده های نفتی LPG به عنوان یکی از محصولات با ارزش نفت و گاز مورد توجه قرار گرفته است بسیاری از جریانات گازی در پالایشگاه ها و واحدهای بهره برداری حاوی مقادیر بالایی از LPG می باشند که بسیاری از آنها بدون استفاده سوزانده م یشوند یکی از دلایل این امر نیاز به فرآیند نسبتاً پیچیده به منظور LPG از جریان گازی، با روشهای سنتی م یباشد. با وجود تکنولوژی غشائی به عنوان یک عملیات جداسازی بسیاری کارآمد با حجم و ابعاد کم و قابلیت انعطاف بالا، می توان از هدر رفت مقادیر بالایی از LPG جلوگیری کرد و در واحدهایی که از روشهای صنعتی استفاده می کنند راندمان جداسازی را بسیار بالابرد و میزان بازیافت را تا 99% رساند. لذا شناخت و بررسی تکنولوژی جداسازی به منظور جداسازی LPG از جریانهای گازی می تواند یکی از زمینه های تحقیقاتی و عملی بسیار راه گشا به منظور بالا بردن ارزش افزوده در واحدهای نفت و گاز و جلوگیری از هدر رفت منابع طبیعی مورد توجه قرار گیرد. لذا در این گزارش سعی بر معرفی و بررسی مقدماتی این متد می باشد.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 39
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

سمینار برای دریافت درجه کارشناسی ارشد

مهندسی شیمی – مهندسی فرایند

عنوان:

تولید انواع روغن های روانکار و کاربردهای آن و روش های نونین تصفیه روغن های سوخته (کارکرده) و تبدیل آن به BASE OIL

چکیده:

روغن های روانکار کاربرد وسیعی برای کاهش اصطکاک و فرسایش به وسیله دخالت یک فیلمی از مواد بین سطح مالش دهنده روغن کاری را دارند. معمولا روغن های روانکار شامل دو ماده هستند که هم روغن پایه و هم ماده افزودنی شیمیایی دارند. با افزودن مواد افزودنی شیمیایی خاص، خواص روغن روانکار بالا برده می شود و سرعت تغییرات نامطلوب اتفاق افتاده در خلال عملیات کاهش می یابد. در نتیجه، دفع نادرست روغن کارکرده می تواند تهدیدی برای سلامت انسان ها و محیط باشد.

با این وجود روغن روانکار کار کرده تبخیر نمی شود و کمتر از بین می روند. بنابراین نیاز است که قبل از اینکه آنها به محیط تخلیه شوند یک تصفیه مناسب انجام شود. اخیرا یک افزایش تمایل برای کاربرد فرآیند تصفیه مجدد روغن های روانکار کارکرده به عنوان پایه تصفیه مجدد در سراسر جهان پیدا شده است.

فرایند تصفیه مجدد روغن های روانکار کارکرده به وسیله تماس روغن کارکرده در یک برج استخراج همراه یک هیدروکربن سبک به عنوان حلال برای مثال پروپان انجام می گیرد که حاصل آن یک ماده اکستراکت ورافینت می باشد. حلال از اکستراکت ورافینت دفع می شود و بازیافت می گردد و هیدروکربن های نامطلوب از روغن پایه جدا می شود.

مقدمه

معمولا روغن روانکار جدید شامل دو ماده هستند: یک روغن پایه و دیگری مواد افزودنی شیمیایی می باشد. با افزودن مواد افزودنی شیمیایی خاص خواص روغن روانکار بالا برده می شود و سرعت تغییرات نامطلوب اتفاق افتاده در خلال عملیات کاهش می یابد. انواع مختلف مواد افزودنی همراه روغن پایه برطبق درجه و وظایف معینی که دارند، ترکیب می شوند. انواع روغن های روانکار شامل 30% مواد افزودنی هستند که در جدول شماره 1 نشان داده می شود.

به منظور نگهداری موتورها در شرایط خوب؛ توصیه می شود که روغن موتور تخلیه شود و قبل از اینکه مدت زمان سرویس فرارسد به وسیله روغن جدید جایگزین گردد. این سررسید در روغن موتور تغییرات خواص فیزیکی و شیمیایی آنها قبل از اینکه کارائی عمومی شان را اجرا نکنند اتفاق می افتد.

بخش اول: تولید انواع روغن های روانکار و کاربردهای آن

فصل اول: مقدمه ای بر روانکاری و کاربردها

1-1- روانکاری

روانکاری علم تسهیل حرکت نسبی سطوح در تماس با یکدیگر است. این علم به عنوان یکی از رشته های بسیار مهم در علم مهندسی شناخته می شود، به طوری که موفقیت بسیاری از طرح های صنعتی در گرو آگاهی از این دانش فنی خواهد بود. امروزه توسعه صنعت روانکار یک بخش مهم از توسعه صنایع ماشینی و صنایع مربوط به آن شده است. علاوه بر این، با مطرح شدن بحث های جدیدی چون بهینه سازی مصرف و حفظ منابع تجدیدناپذیر و همچنین رعایت الزامات زیست محیطی، مطالعه بر روی روانکارها جایگاه خاصی را پیدا کرده است. برای جلوگیری از فرسایش و از کارافتادگی زودرس ماشین آلات صنعتی و همچنین دسترسی به بیشترین بازده مکانیکی در حداقل زمان برنامه روانکاری مناسب جزء مهمترین شرایط مورد نیاز خواهد بود. در قرن حاضر برنامه روانکاری مناسب، یک برنامه روانکاری پایدار است که شاید با کمی تعاریف روانکاری قدیمی متفاوت باشد.

نوع روانکار، مقدار زمان و مکان مناسب، چهار عامل مهم در عمل روانکاری هستند که امروزه برای یک روانکاری موفق علاوه بر آنها باید هزینه های نگهداری، تعمیرات، عملیات (هزینه سوخت، استهلاک، و رعایت قوانین و الزامات زیست محیطی را نیز در نظر گرفت. آمار نشان می دهد تنها با یک افزایش 1 یا 2 درصدی در هزینه برای یک روانکاری بهتر می توان حدود 15% از هزینه های اضافی یک خودرو را کاهش داد. ضمن اینکه استفاده از یک روانکار مناسب فاصله زمانی تعویض روغن برای یک خودرو را زیاد می کند که این مسئله به حفظ محیط زیست و در نهایت حفظ منابع تجدید ناپذیر نیز کمک می کند و لذا این مسئله خود بیانگر اهمیت دانش فنی روانکارهاست.

به طور کلی به لایه های گاز، مایع و یا جامد که میان دو سطح قرار می گیرد و یکنواختی حرکات یک سطح بر روی دیگری را بهبود می بخشند و از ایجاد آسیب بر روی سطوح جلوگیری می کنند، روانکار گویند.

روانکارها کاربردهای بسیار مهمی در موتورهای احتراق داخلی، وسایل نقلیه، چرخنده های صنعتی، کمیرسورها، توربین ها سیستم های هیدرولیک و… دارند. 90% از روانکارهای مصرفی را روغن های روانکار تشکیل می دهند که در بین آنها روغن های خودرو بیشترین مصرف را دارند.

در حال حاضر بیش از 1700 تولید کننده روانکار در سراسر جهان وجود دارند که حدود 200 شرکت به صورت جانبی و در کنار تولیدات دیگر، تولید می کنند و حدود 1500 شرکت به طور اختصاصی به تولید روانکار پرداخته اند. بیش از 60% از روانکارهای مصرفی در سراسر دنیا توسط این شرکت تولید می شود. در جدول 1-1 نام 16 شرکت از بزرگترین روانکارها در دنیا و در جدول 1-2 نیز نام بزرگترین تولیدکنندگان روانکارهای صنعتی آمده است.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.ش



:: بازدید از این مطلب : 51
|
امتیاز مطلب : 3
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

پایان نامه برای دریافت درجه کارشناسی ارشد

مهندسی شیمی – فرآیند

عنوان:

کاربرد CFD در مدل سازی دانه کاتالیست متخلخل تیتانیت پروسکایت در واکنش های جفت اکسایشی متان (OCM)

چکیده:

فرایند جفت شدن اکسایشی متان برهم کنش پیچیده ای از پدیده های انتقال و سینتیک شیمیایی است. لذا شبیه سازی و بررسی مدل سازی با احتساب جزئیات واکنش به فهم هرچه بیشتر این برهم کنش کمک خواهد کرد. برای مدل سازی جریان توام با واکنش از داخل دانه کاتالیست در محیط متخلخل از دینامیک سیال محاسباتی استفاده می شود. ضرورت کاربرد CFD در چنین سیستم هایی به کارگیری ابزار پرقدرت و توانا برای تحلیل رفتار جریان سیال و انتقال حرارت و معادلات حاکم پیچیده می باشد. در واقع هدف از این تحقیق، بررسی رفتار دانه کاتالیست متخلخل در واکنش جفت شدن اکسایشی متان از دو دیدگاه آزمایشگاهی و مدل سازی عددی می باشد. یعنی ابتدا رفتار دانه کاتالیست تیتانیت پروسکایت را توسط حل عددی و به دست آوردن پروفایل های اجزای واکنشی مورد بررسی قرار می دهیم. سپس اعتبار داده های خروجی از مدل را در تطابق با داده های خروجی از مدل مورد ارزیابی قرار می دهیم پس از اطمینان یافتن از اعتبار مدل راهکارهایی در جهت افزایش گزینش پذیری و راندمان واکنش OCM در دانه کاتالیست که حکم قلب راکتورهای کاتالیستی بستر ثابت را دارد ارائه می دهیم. لذا برای رسیدن به این هدف اطلاع داشتن از مراحل انجام واکنش کاتالیستی و مبانی مدل سازی راکتورهای کاتالیستی بستر ثابت امری ضروری و مهم می باشد. از جمله عوامل موثر در رفتار کاتالیستی درجه حرارت، نسبت متان به اکسیژن و سرعت فضایی گاز (GHSV) می باشد. تاثیر این عوامل بر میزان و گزینش پذیری محصولات C2 نتایج مهمی می باشد که از این مدل سازی به دست خواهد آمد.

مقدمه:

امروزه در پالایشگاه های نفت و گاز و مجتمع های پتروشیمی، مدل های کامپیوتری و تکنیک های ریاضی نقش مهمی را در طراحی تجهیزات جدید کارآمد و بهینه سازی آنها ایفا می کند. در این راستا در مهندسی واکنش ها بررسی واکنش های هتروژنی جامد – گاز و پدیده هایی مانند انتقال حرارت، نفوذ و واکنش شیمیایی در تجهیزات فرایندی و خطوط تولید از اهمیت ویژه ای برخوردار می باشد. در چند دهه اخیر محققان تلاش های زیادی را در جهت مدل سازی این پدیده ها با استفاده از ابزارها و نرم افزارهای پر قدرت به منظور افزایش راندمان تجهیزات و واحدها و همچنین درک بهتر از مکانیزم های فیزیکی و شیمیایی فرایندها انجام داده اند و توسط آن توانسته اند تکنیک های جدیدی را در زمینه های شبیه سازی و بهینه سازی فرایندها به منظور کاهش هزینه های اقتصادی و بهره وری بیشتر ارائه نمایند.

در این میان طراحی و مدلسازی راکتورهای کاتالیستی بستر ثابت توجه بسیاری از محققان و مهندسان را در چند دهه گذشته به خود جلب کرده است. تحلیل کلی راکتورهای بستر ثابت از مقیاس میکروسینتیک (با بررسی دانه و ساختار حفره ای آن که پدیده های نفوذ و واکنش در آن رخ می دهد) آغاز می گردد. و به مقیاس ماکرو (با مطالعه و تحقیق بر شکل هندسی و مشخصات بستر راکتور جایی که پدیده های جابجایی و انتقال جرم و حرارت و پراکندگی رخ می دهد) ختم می گردد. مهم ترین و اساسی ترین بخش این مدلسازی که حکم قلب راکتور کاتالیستی بستر ثابت را دارد مدل سازی دانه کاتالیست و رفتار جریان سیال در داخل دانه می باشد. در پروژه حاضر به بررسی یک دانه کاتالیست متخلخل از نوع تیتانیت پروسکایت و مدلسازی آن توسط دینامیک سیال محاسباتی (CFD) در واکنش جفت اکسایشی متان (OCM) خواهیم پرداخت. نرم افزار مورد استفاده در این تحقیق جهت مدلسازی FLUENT & GAMBIT می باشد که یکی از ابزارهای CFD به شمار می آید. CFD یکی از شاخه های دینامیک سیالات می باشد که از روش ها و الگوریتم عددی برای حل و تجزیه مسائل جریان سیال، انتقال حرارت و پدیده های همراه نفوذ و واکنش شیمیایی براساس شبیه سازی کامپیوتری استفاده می نماید. هدف نهایی از این شبیه سازی در این پروژه ارائه یک برنامه کامپیوتری است که بتواند با وارد کردن دما، فشار و جزء مولی اجزای خوراک در آن، دماهای خروجی و همچنین جزء مولی محصولات را در طول دانه کاتالیست پیش بینی نمود.

شایان ذکر است مدل سازی دانه کاتالیست و بررسی رفتار آن در واکنش های هتروژنی جامد گاز می تواند نتایج بسیار مهم و ارزشمندی برای محققان و مهندسان را به ارمغان آورد. با مطالعات بیشتر بر روی این دسته از مدلسازی ها می توان زمینه لازم را برای طراحی یک راکتور کاتالیستی و کنترل آن (با تنظیم نسبت اجزای خوراک به عنوان مثال نسبت متان به اکسیژن (CH4/O2) در واکنش OCM یا کنترل محدوده دمای عملیاتی) در شرایط عملیاتی بهینه، دور از شرایط runaway تامین نمود. همچنین مسئله افزایش مقیاس در طراحی راکتور ها امری بسیار ضروری و مهم می باشد که با بررسی مدل در رفتار هیدرودینامیکی و خواص فیزیکی سیستم، امکان استفاده از راکتورهای صنعتی با اندازه های مختلف را فراهم می آورد. با در نظر گرفتن و جمع بندی تمامی عوامل فوق امکان دستیابی آسان تر به طراحی یک راکتور واحد صنعتی در شرایط عملیاتی بهینه را خواهیم داشت.

همان گونه که اشاره شد در این پروژه به کاربرد CFD در مدل سازی دانه کاتالیست متخلخل تیتانیت پروسکایت در واکنش جفت اکسایشی متان (OCM) خواهیم پرداخت. واکنش جفت شدن اکسایشی متان که یکی از روش های تبدیل مستقیم متان به هیدروکربن های باارزش تر مانند اتان و اتیلن می باشد در چند سال گذشته تحقیقات زیادی بر روی آن شده است. مسئله اساسی در این واکنش رسیدن به گزینش پذیری بالا برای اتیلن و میزان تبدیل مناسب متان بدون واکنش احتراق کامل متان می باشد. توصیف بیشتر این فرایند در بخش های بعدی آمده است.

ساختار و فصل بندی این پروژه به این صورت است که در فصل اول به اهمیت و کاربردهای CFD در مهندسی شیمی و مروری به تحقیقات پیشین در واکنش های هتروژنی جامد – گاز می پردازیم. در فصل دوم اصول و تئوری واکنش های هتروژنی و رفتار دانه کاتالیست متخلخل و برهم کنش های آن در واکنش فاز گازی را مورد مطالعه قرار می دهیم. سپس به معرفی و مکانیزم های فرایند جفت اکسایشی متان و اطلاعات سینتیکی و ترمودینامیکی مربوطه خواهیم پرداخت.

در ادامه فصل چهارم شامل بخش تجربی می باشد که جهت ارزیابی اعتبار مدل یکسری آزماشات مشابه با شرایط مدل سازی طراحی و اجرا شده است و فصل بعدی شامل مدل سازی دانه کاتالیست و نتایج بحث حاصل از آن می باشد.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 58
|
امتیاز مطلب : 3
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

“M.Sc” پایان نامه برای دریافت درجه کارشناسی ارشد

مهندسی شیمی – فرآیند

عنوان:

طراحی و بهینه سازی برج تقطیر جداسازی اورتو زایلین از مخلوط زایلین ها از دیدگاه انرژی

چکیده

در عصر حاضر که مباحث استفاده از روشهای نوین جهت کاهش مصرف انرژی از اهمیت بسزایی برخوردار شده است باید که از این روند غافل نشد لذا در این پروژه برآن شدیم تا به بررسی یکی از واحد های صنعتی کشور که دارای خصوصیات منحصر به فردی است بپردازیم زیرا مختص به جداسازی آروماتیک ها است که این دسته مواد هیدروکربنی دارای مشخصات منحصر به فردی هستند.

برای انجام این کار از روشی که در طی مقاله در سال 2001 مطرح شده است بهره جستیم تا به انجام امر بهینه سازی انرژی به میزان 2,690,000,000kj/yr نائل شویم. اما جهت انجام این کار نیاز به انجام مقدماتی مانند شبیه سازی فرآیند نیز بودیم که در طی پروژه به آن پرداخته شد و در قسمت نهایی پروژه نیز گریزی به مبحث طراحی مفهومی با در نظر گرفتن ملاحظات انرژی زده شده است و در این قسمت نیز نتایجی به دست آمد که میتوان از آنها در جای خود بهره برد.

مقدمه

تقطیر روشی است برای جداسازی اجزای یک محلول، بر اساس قابلیت توزیع مواد بین فازهای گاز و مایع، وقتی که تمام اجزا در هر دو فاز موجود باشند. در اینجا بر خلاف عمل جذب یا دفع گازی، که در آنها ماده جدیدی به منظور ایجاد فاز دوم به مخلوط اضافه می شود، فاز جدید به وسیله تبخیر یا میعان از محلول اولیه تشکیل می شود.

برای روشن شدن تفاوت بین تقطیر و سایر عملیات، به ذکر چند مثال می پردازم. در جداسازی آب و نمک معمولی، چون نمک در شرایط موجود کاملاً غیر فرار است باقی می ماند و آب تبخیر میشود. این عملیات تبخیر نام دارد. و اما تقطیر جداسازی محلول هایی است که تمام اجزا آن فراریت نسبی داشته باشند. از این دسته، جداسازی اجزای محلول مایعی از آمونیاک و آب را در نظر بگیرید. همانگونه که می دانیم وقتی محلول آمونیاک – آب را در مجاورت هوا (که اساساً در مایع نامحلول است) قرار دهیم، آمونیاک دفع میشود اما به دلیل مخلوط بودن با بخار آب و هوا خالص نیست. به عبارت دیگر، با حرارت دادن، میتوانیم محلول را به طور جزئی تبخیر کنیم به طوریکه فاز گازی شامل آب و آمونیاک تشکیل گردد و از آنجایی که فاز گاز، نسبت به مایع باقی مانده ، از نظر آمونیاک غنی تر است، مقداری جداسازی صورت می گیرد. با دستکاری
مناسب فازها یا تکرار تبخیر و میعان، میتوان به طور معمول هر دو جزء مخلوط را به صورت خالص کاملاً جدا کرد.

مزایای چنین روش جداسازی ای روشن است. در عمل تقطیر، فاز جدید از جهت ارزش گرمایی با محلول اولیه تفاوت دارد؛ ولی دادن یا گرفتن حرارت به راحتی صورت میگیرد که البته هزینه انجام این عمل باید همیشه در نظر گرفته شود. به عبارت دیگر، در عملیات جذب یا دفع ، که با افزودن یک ماده خارجی همراه است، محلول جدیدی به دست می آید که به نوبه خود باید بوسیله یکی از عملیات انتقال جرم جداسازی شود مگر اینکه محلول جدید مستقیماً قابل استفاده باشد.

تقطیر نیز، به عنوان یک فرآیند جداسازی، به نوبه خود محدودیت های ویژه ای دارد. در جذب یا عملیات، که در آن یک ماده خارجی برای ایجاد فاز جدید جهت توزیع اجزاء استفاده میشود، میتوان حلالی را انتخاب کرد که بیشترین جداسازی را فراهم کند؛ مثلاً، چون آب برای جذب هیدروکربورهای گازی از یک مخلوط گازی مناسب نیست، بجای آن می توان از یک روغن هیدروکربوری که حلالیت بهتری داشته باشد استفاده کرد. ولی در تقطیر چنین آزادی انتخابی وجود ندارد. با به کار بردن حرارت در تقطیر، به تنهایی، گاز ایجاد شده فقط شامل اجزاء موجود در مایع خواهد بود؛ بنابراین به علت شباهت زیاد گاز و مایع از نظر شیمیایی، اختلاف غلظت ناشی از توزیع اجزاء بین دو فاز معمولاً زیاد نیست. در واقع گاهی اختلاف غلظت آنقدر کم است که فرآیند، عملاً ممکن نیست و حتی ممکن است اختلاف غلظتی وجود نداشته باشد.

با این وجود ، در جداسازی مستقیم که با تقطیر نیز انجام می شود، فرآیند دیگری برای جداسازی لازم نیست و به همین خاطر این عمل یکی از مهمترین عملیات های انتقال جرم است. با توجه به تفصیل فوق به بررسی یکی از گزینه های حساس جداسازی که مربوط به جداسازی اجزایی با نقطه جوش های نزدیک پرداختیم و سعی کردیم از نقطه نظر های گوناگونی به بررسی این واحد بپردازیم.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 57
|
امتیاز مطلب : 1
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

پایان نامه برای دریافت درجه کارشناسی ارشد

مهندسی شیمی – طراحی فرآیند

عنوان:

مدل سازی هیدروژناسیون روغن های نباتی در جهت کاهش ایزومر ترانس

چکیده:

مرحله صنعتی هیدروژناسیون روغن های خوراکی یک مرحله میانی یا تحریک کننده می باشد که با استفاده از کاتالیست نیکل تحت فشار و دمای ثابت اجرا می شود.

هیدروژناسیون مرحله ای است که از طریق آن ترکیب های روغنی غیراستاندارد، اشباع می شوند و محصول نهایی تبدیل به روغن نیمه جامد می شود.

در سرتاسر مرحله هیدروژناسیون، اسید لینولنیک یک مولکول هیدروژنی را جذب می کند و به اسید لینولئیک تبدیل می شود که بخشی از آن به اسید اولئیک تغییر شکل می دهد. بعلاوه، مرحله هیدروژناسیون باعث افزایش شکل گیری ایزومر ترانس می شود.

اندازه گیری اسیدهای چرب در روغن های بررسی شده و محصولات هیدروژنی شده به وسیله GC انجام می شود.

محتوای ایزومرهای ترانس کلی نیز به وسیله طیف نمایی مشخص می شود.

فشار و دمای راکتور بین 1 – 3 اتم و 100 – 210 درجه سانتیگراد می باشد و مرحله هیدروژناسیون نیز در 90 دقیقه کامل می شود.

در این تحقیق یک مدل جنبشی ارائه می شود که می تواند برای توصیف هیدروژناسیون و واکنش های ایزومری اسیدهای اشباع نشده، مفید می باشد.

مقدمه:

چربی ها و روغن ها مواد غذایی باارزشی هستند که علاوه بر تأمین انرژی نقش مهمی در بقای سلامت و ادامه حیات داشته و در گروه کالاهای مصرفی ضروری جای دارند.

چربی ها و روغن ها منبع فشرده ای از انرژی غذایی بوده و ویتامین ها محلول در چربی (A؛ D؛ E و K) که در تأمین سلامت نقش مهمی را به عهده دارند از طریق مصرف این مواد به بدن می رسند. همچنین اسیدهای چرب که نقش آنها در سلامت و انجام اعمال بدن به اثبات رسیده و بدن قادر به ساختن آنها نیست و از راه مصرف روغن های نباتی تأمین می شود.

روغن ها و چربی ها به عنوان واسطه انتقال حرارت، گرمای لازم برای پختن را به ماده غذایی رسانده و سبب خوش طعم و لذیذ شدن و بهبود رنگ و بافت غذاها می شوند. این مواد خمیر (در محصولات نانوایی) بوده و در صنایع غذایی به طور گسترده به مصرف می رسند. برخی از دانه ها روغنی نظیر سویا و پنبه دانه نه تنها به عنوان منبع روغن بلکه به عنوان منبعی از پروتئین گیاهی برای خوراک دام و انسان بااهمیت هستند.

اکثر چربی ها و روغن نباتی پس از انجام فرایندهای لازم و خارج کردن ناخالصی ها به مصرف خوراکی می رسند. تصفیه روغن شامل مراحل صمغ گیری، خنثی سازی، بیرنگ کردن و بی بو کردن است. برای بسیاری از مصارف از جمله تولید روغن های نباتی جامد هیدروژنه (شورتنینگ ها) و مخلوط چربی برای تولید مارگارین ها، روغن های نباتی هیدروژنه می شوند. همچنین برای تولید روغن های مایع مخصوص سالاد که در درجه حرارت های پایین (درجه حرارت یخچال) کدر نشده و شفاف باقی بماند روغن وینترازینگ یا موم زدایی می شود.

فصل اول: کلیات

1-1- هدف

هرکس علاقه مند است که بداند چه مواردی را می خورد و خوردن این موارد چه تأثیری در روند زندگی، سلامت و بهداشت وی خواهد داشت. نوع زندگی امروزی و عدم تحرکی که در جوامع بشری به چشم می خورد، همراه با رشد سرسام آور جمعیت جهانی خصوصا در ممالک عقب نگاه داشته شده و محدودیت منابع و امکانات همگی دست به دست هم داده اند و سلامتی و بهداشت انسانی را تهدید می کنند. با این حال، اگر انسان تغذیه ای متناسب با شغل، فعالیت و محیطی که در آن به سر می برد، نداشته باشد یا اینکه نوعی تغذیه خاص سلامتش را تهدید کند نه تنها از رسیدن به اهداف عالی خود باز می ماند، بلکه هستی و تمامیت وجودش مورد تهدیدی قرار می گیرد.

برخوردار نبودن از تغذیه مناسب، سبب اختلال در رشد، حساسیت شدید در مقابل انواع میکروب ها و بیماری ها، کاهش خلاقیت جسمی و فکری، بی اعتنایی به زندگی و دلبستگی نداشتن به آن، اختلالات روحی و روانی و عقب ماندگی های ذهنی و جسمی می گردد. با وجود قشری که گرفتار روزگاری تمامی تلاش مردم صرف سیر کردن شکم یا تهیه قوت لایموت می شد. بهبود شرایط معیشت و افزایش درآمد متوسط جامعه، امکان انتخاب مواد غذایی را به وجود آود. امروزه دیگر در جوامع پیشرفته، فقط سیر کردن شکم را کافی نمی دانند. در این جوامع مسائلی مانند “چه باید خورد؟”، “چگونه باید خورد؟” و “چقدر باید خورد” به طور جدی مورد توجه فرد فرد مردم و نیز مدیران جامعه که مسئول حفظ سلامت جسمی و روانی نسل حاضر و نسل های آینده هستند، قرار گرفته است. بشر از ابتدای آفرینش با تجربه عینی، نیاز به روغن ها و چربی ها را در سوخت و ساز بدن خویش دریافت و با استفاده از امکانات موجود، به همراه مصرف انواع گوشت ها، دانه ها، و میوه های موجود چربی مورد احتیاج را در تغذیه روزانه خود تأمین نمود.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 41
|
امتیاز مطلب : 2
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

“M.Sc” سمینار برای دریافت درجه کارشناسی ارشد

مهندسی شیمی- طراحی فرآیند

عنوان:

بررسی تولید گاز سنتز در راکتورهای پلاسمای مایکروویو

چکیده:

گاز سنتز از گازهای هیدروژن و مونواکسیدکربن تشکیل شده است، تحقیقات بسیاری بر روی روشهای پیشرفته و جدید تولید گاز سنتز انجام شده است. نتایج این تحقیقات نش ان می دهد که استفاده از راکتور پلاسمای الکتریکی برای تولید گاز سنتز یک تکنولوژی پیشرفته با بازده بالا و محافظ محیط زیست می باشد. انواع راکتورهای پلاسمایی که تا کنون برای تولید گاز سنتز توسط محققان به کار رفته، عبارتند از: راکتورهای تابشی، هاله، آرام، رادیوفرکانسی و مایکروویو. راکتورهای پلاسمایی مایکروویو به دلیل ع ملکرد در محدوده وسیعی از فشار و سادگی عملکرد و قابلیت تنظیم پارامترهای
عملیاتی بر حسب خوراک ورودی، بهترین انتخاب برای استفاده به عنوان راکتورهای پلاسمای شیمیایی گاز سنتز می باشد.

مقدمه:

برای تبدیل موثر منابع انرژی معمولا از متان برای تولید مواد واسطه یا محصولات با ارزشی از قبیل گاز سنتز (H3+CO) و اتیلن (C2H4) متانول (CH3 OH) و فرمالدهید (CH2٢O) استفاده می گردد. برای تبدیل متان به گاز سنتز از واکنش هایی از قبیل اکسیداسیون جزئی متان، تبدیل متان با بخار و تبدیل با دی اکسید کربن استفاده می شود. این واکنش ها روشهای اصلی برای تولید محصولات بعدی از قبیل: متانول، تولید آمونیاک، سنتز فیشر – تراپش می باشند. تخمین زده شده است که تقریباً 60 – 70% هزینه های صرف شده در واکنش های تبدیل متان به تهیه گاز سنتز اختصاص داده شده است.

تحقیقات بسیاری بر روی روشهای پیشرفته و جدید تولید گاز سنتز انجام شده است نتایج این تحقیقات نشان می دهد که استفاده از راکتور پلاسما الکتریکی برای تولید گاز سنتز یک تکنولوژی پیشرفته با بازده بالا و محافظ محیط زیست می باشد.

انرژی الکتریکی عاملی بسیار مناسب و تکمیلی برای فعال کردن مواد شیمیایی و شروع واکنش ها محسوب می شود. ایجاد تخلیه الکتریکی در گاز ذرات بسیار فعالی از جمله الکترون ها، یون ها، اتم ها، رادیکال ها و مولکول ها بر انگیخته به وجود می آیند که به عنوان کاتالیست برای تولید محصولات عمل می کنند.

تبدیل غیر کاتالیستی متان به وسیله تخلیه الکتریکی از قبیل: هاله رادیو فرکانسی (RF)، فرکانس های پالسی بالا، مایکروویو (MW) و DBD به مرحله اجرا در آمده است.

پلاسمای مایکروویو معمولاً درفرهای مایکروویو، رسوب الماس، تولید IC و ایجاد چگالی بالای پلاسما و انرژی متوسط الکترون می تواند به کار برده شود. استفاده این نوع پلاسما در محدوده تغییرات وسیعی از فشار و شدت جریان ورودی گاز و شرایط عملیاتی آسان و در درون راکتورهای بدون الکترود که دیگر باعث خوردگی الکترودها و آلودگی و مسمومیت آنها می گردد، باعث شده است که استفاده آن جذاب تر از پلاسماهای دیگر گردد.

در بخشهای آینده ابتدا کلیات موضوع و سپس به شرح مفهوم پلاسما می پردازیم و واکنش هایی را که در پلاسمای مایکروویو انجام ش ده و تولید گاز سنتز در این پلاسما را مورد بررسی قرار می دهیم. سپس عوامل و پارامترهای موثر بر عملکرد راکتورهای پلاسمای مایکروویو در تولید گاز سنتز و در انتها راکتورهای پلاسمای دیگر در تولید این گاز و نتیجه گیری و پیشنهادات را مورد بحث و بررسی قرار می دهیم.

فصل اول: کلیات

1-1- هدف

برای تبدیل متان معمولاً از کاتالیزورهای بسیار فعال از قبیل: pt,pd,Ir,co,Ni بر روی پایه Tio2,AL2o3 و یا الماس های اکسید شده (oxidized diomand) در دمای بالا (k 1300 – 1000) و فشار بالا (15 – 30 atm) انجام می شود. بنابر این هدف ایجاد گزینه های سازگار با محیط زیست و مقرون به صرفه از لحاظ اقتصادی که می تواند شرایط عملیاتی دمایی – فشار و پرهیز از مشکل رسوب کربن به عنوان سم کاتالیزوری را حل کند می باشد.

تحقیقات بسیاری بر روی روشهای پیشرفته و جدید تولید گاز سنتز انجام شده است نتایج این تحقیقات نشان می دهد که استفاده از راکتور پلاسما الکتریکی برای تولید گاز سنتز یک تکنولوژی پیشرفته با بازده بالا و محافظ محیط زیست می باشد.

بنابراین انواع مختلف راکتورهای پلاسما برای تولید گاز سنتز مورد مطالعه قرار گرفته اند، با توجه به خصوصیات انواع پلاسما به طور کلی راکتورها پلاسمای تابشی به دلیل فشار کم عملیاتی و در نتیجه محدود بودن شدت جریان خوراک ورودی به راکتور برای تبدیل به راکتور شیمیایی در مقیاس های صنعتی مناسب نیستند. در راکتورهای پلاسمای هاله بر مشکل فشار عم لیاتی پایین غلبه می کنیم (فشار عملیاتی این راکتورها اتمسفر می باشد) اما به دلیل خاصیت غیر همگن بودن تخلیه الکتریکی در این نوع راکتور حجم فعال شیمیایی بسیار کم است (فضای کوچکی در نزدیکی الکترود نقطه) بنا بر این استفاده از این نوع پلاسما نیز به عنوان راک تور شیمیایی در مقیاس بزرگ صنعتی مناسب نمی باشد. در تخلیه الکتریکی آرام بر مشکل فشار پایین و حجم کم فعال غلبه شده است در نتیجه این نوع تخلیه الکتریکی برای استفاده در مقاصد صنعتی بسیار مناسب به نظر می رسد، اما مشکل اساسی این نوع راکتورها محدودیت فضای بین ا لکترودها است برای غلبه بر این مشکل برای ساخت راکتورهای DBD در مقیاس بزرگ برای تولید گاز سنتز از راکتورهای لوله ای موازی استفاده شده است. انواع دیگر راکتورهای پلاسما شیمیایی راکتورهای ICP یا همان راکتورهای مایکروویو و رادیو فرکانسی می باشند. در راکتورهای RF با توجه به محدوده پایین فشار عملیاتی برای پایداری پلاسما به ایجاد فشارهای پایین احتیاج است که از لحاظ عملیاتی در مقیاسهای بزرگ مشکل ساز می باشد. اما راکتورهای MW از آنجاییکه این نوع پلاسما در محدوده وسیعی از فشار پایدار باقی می مانند و سادگی عملک رد آنها و قابلیت تنظیم پارامترهای عملیاتی بر حسب خوراک ورودی بهترین انتخاب برای استفاده به عنوان راکتورهای پلاسما شیمیایی گاز سنتز می باشند.

نتایج تحقیقات نشان می دهد تبدیل پلاسمایی گاز طبیعی به گاز سنتز با توجه به تئوری پیچیده پلاسما هنوز از جهات بسیاری در ابهام می باشد و تجربیات کمی تا کنون در این زمینه انجام شده است. از جمله مهمترین مشکلات انتخاب گاز اکسید کننده مناسب برای اکسیداسیون متان و تولید گاز سنتز می باشد.

تبدیل غیر کاتالیستی متان (CH4) به وسیله تخلیه های الکتریکی از قبیل فرکانسهای بالای پالسی، هاله، رادیو فرکانسی، مایکروویو و DBD به مرحله اجرا در آمده است. عمدتاً این نوع رآکتورهای پلاسما برای تولید محصولات هیدروکربن های C2، متانول یا سنتز فیلم کربنی شبه الماس به کار می رود (102 – 107) مثلاً راکتورهای پلاسمایی رادیو فرکانسی در فشار پایین معمولاً در صنعت برای تولید نیمه هادیها و بهبود کیفیت سطح به کار برده می شوند.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 64
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاداسلامی

واحد تهران جنوب

دانشکده تحصیلات تکمیلی

“M.Sc” پایان نامه برای دریافت درجه کارشناسی ارشد

مهندسی شیمی- مهندسی فرایند

عنوان:

عوامل موثر بر راندمان کوره های دوار سیمان و آنالیز اکسرژی درسیستم پخت سیمان هگمتان

چکیده:

سیستم پخت سیمان مهمترین و اساسی ترین بخش یک واحد تولیدی سیمان می باشد به طوریکه ظرفیت اسمی کارخانه های سیمان بر اساس میزان تولید روزانه (24 ساعته) کوره بنا نهاده شده و ظرفیت دپارتمانها، تجهیزات و ماشین آلات، سیلوهای ذخیره مواد خام ، کلینکر و سیمان نیز بر پایه ظرفیت تولید کوره طراحی و ساخته می شود.

لذا راندمان کوره یکی از پارامترهای مهم در بخش تولید بوده و تلاش در جهت به ظرفیت رساندن و سپس بالا بردن راندمان تولید کوره از مهمترین اهداف تیم مدیریتی و پرسنل فنی کارخانه های سیمان می باشد.

در این پروژه سعی بر این است که پس از ارائه شناخت کلی از خط تولید سیمان دو فاکتور بسیار مهم و ارزشمند یعنی عوامل موثر بر راندمان کوره های دوار سیمان از دیدگاه بهره برداری و آنالیز شیمیائی خوراک کوره مورد بررسی قرار گرفته و راه حل هایی صحیح جهت برخورد با مشکلات مطرح شده ارائه شود.

در پایان انالیز اکسرژی درسیستم پخت سیمان هگمتان انجام شده و با توجه به نتایج حاصله راه کارهایی جهت بازیافت انرژی های محسوس به هدر رفته از سیستم پخت ارائه شده که ارز ش بسزایی درصرفه جویی مصرف انرژی و بازگشت سرمایه در این شرکت در پی خواهد داشت.

مقدمه

1- سیمان چیست؟

سیمان گردی است نرم، جاذب آب و چسباننده خرده سنگ که اساساً مرکب است از ترکیبات پخته شده اکسید کلسیم با اکسید سیلیس و اکسید آلومینیوم و اکسید آهن.

ملات این گرد قادر است به مرور در مجاورت هوا یا در زیر آب سخت شده و ضمن داشتن ثبات حجم مقاومت خود را حفظ نموده و در فاصله 18 روز زیر آب ماندن دارای حداقل مقاومت 25 نیوتن بر میلیمتر مربع باشد.

2- مقدمه ای کوتاه از تاریخچه صنعت سیمان

اختراع کوره دوار سیمان در سال 1885 میلادی توسط Fredrik ransom در انگلستان به ثبت رسید. این کوره 1/5 متر قطر و 7/5 متر طول داشت.

سوخت کوره دوار در آمریکا مایع (نفت کوره) و در آلمان پودر زغال سنگ بود و خوراک کوره هم به صورت دوغاب و هم به صورت پودر تهیه می گردید . کلینکر خروجی از کوره وارد استوانه عمودی یا دواری می شد و توسط هوا خنک می گردید و هوای خروجی از خنک کن جهت سوختن زغال یا نفت کوره مورد استفاده قرار می گرفت.

تکنولوژی جدید سیمان برای اولین بار با راه اندازی کوره 100 تنی سیمان ری در نزدیکی کوه بی بی شهربانو و در سال 1312 در ایران متولد شد. راه اندازی کارخانه سیمان ری به مفهوم ایجاد شتاب در نوسازی و صنعتی شدن کشور بود و از این رو سهم این کارخانه در پی ریزی بسیاری از کارخانه ها و تاسیسات صنعتی، د انشگاهی، بهداشتی و کشاورزی و… استثنائی و در خور توجه است.

در حال حاضر پروژه های بسیاری در نقاط مختلف کشور در دست اجرا می باشد که بسیاری از آنها تا سال 1390 به تولید خواهند رسید. با راه اندازی این پروژه ها ظرفیت تولید سیمان ایران به حدود 70 میلیون تن در سال خواهد رسید که معادل 2/5 درصد تولید سیمان جهان خواهد بود.

ضمناً مصرف سرانه سیمان در کشور در حال حاضر حدود 450 کیلوگرم است که بالاتر از متوسط مصرف جهانی(340 کیلوگرم) می باشد.

3- عنوان پروژه

عوامل موثر بر راندمان کوره های دوار سیمان و انالیز اکسرژی در سیستم پخت سیمان هگمتان

عوامل متعددی بر راندمان کوره های دوار سیمان موثر می باشد که می توان به موار د زیر اشاره نمود:

1- عوامل موثر از دیدگاه بهره برداری

2- عوامل موثر از دیدگاه آنالیز شیمیایی خوراک کوره

3- عوامل موثر از دیدگاه طراحی و تکنولوژی ساخت تجهیزات سیستم پخت

4- عوامل موثر از دیدگاه طراحی و ساخت دستگاه های مرتبط با سیستم پخت

5- مدیریت صحیح به همراه آموزش و بهره برداری صحیح از منابع انسانی

6- سایر موارد مرتبط در جهت بهبود عملکرد کوره دوار سیمان به عنوان یک راکتور پیچیده شیمیایی

با توجه به هفت سال تجربه بهره برداری اینجانب از کوره دوار واحد یک شرکت سیمان هگمتان و همچنین تجارب و آموخته های اینجانب از پیشکسوتان صنعت سیمان کشور از طریق شرکت در دوره ها و همایش ها و سیمنارهای متعدد باعث شد که ضمن بهره گیری از توفیقات خداوند منان و مساعدت و راهنمایی اساتید بزرگوارم آقایان دکتر امید خواه و دکتر ارجمند درپایان تحصیلات تکمیلی در مقطع کارشناسی ارشد به بررسی دو عامل مهم بر راندمان کوره های دوار سیمان یعنی عوامل موثر از دیدگاه بهره برداری و آنالیز شیمیایی خوراک کوره بپردازم و در این پروژه هر عاملی که از دو دیدگاه مذکور باعث افزایش مدت کارکرد کوره شده و در عین حال تولید کوره را در حداکثر ظرفیت ممکن قرار دهد مدنظر قرار گرفته است.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 52
|
امتیاز مطلب : 3
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : شنبه 12 تير 1395 | نظرات ()