نوشته شده توسط : مدیر سایت

دانشگاه شیراز

واحد بین الملل

پایان نامه کارشناسی ارشد رشته فیزیک اپتیک لیزر

پراکندگی بریلوئن برانگیخته آبشاری در فیبر نوری

استاد راهنما

دکتر عبدالناصر ذاکری

 

شهریور 1392

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

استفاده از فیبر نوری در سیستم­های انتقال نوری ، به دلیل مزایای زیادی که دارد امروزه کاربرد بسیاری دارد. یکی از پدیده­هایی که در فیبر نوری رخ می­دهدپراکندگی بریلوئن برانگیخته می­باشد. به طور کلی این پدیده باعث محدود نمودن انتقال توان به خروجی فیبر می­گردد و بنابراین نامطلوب می­باشد ولی کاربردهای فراوانی در طراحی ادوات نوری از جمله بافرهای نوری و لیزرهای بریلوئن فیبر نوری دارد. در لیزرهای بریلوئن فیبر نوری از پراکندگی بریلوئن برانگیخته آبشاری استفاده می­شود بنابراین در این پایان نامه به بررسی این پدیده در فیبر نوری پرداخته­ایم. با بررسی و تحلیل معادلات مربوطه به این نتیجه رسیده­ایم که برای داشتن پراکندگی بریلوئن برانگیخته آبشاری در فیبر نوری باید در ساختار سیستم تغییر ایجاد کنیم و نشان داده­ایم که می­توانیم با استفاده از توری براگ در ورودی فیبر، پراکندگی بریلوئن برانگیخته آبشاری ایجاد کنیم. همچنین از آنجایی که این پدیده می­تواند تأخیر زمانی ایجاد کند در این پایان نامه با ارسال سیگنال از انتهای فیبر و حل معادلات مربوطه آن ، اثر پراکندگی بریلوئن برانگیخته آبشاری بر سیگنال را و مقدار تأخیر زمانی ایجاد شده را بررسی نموده­ایم. نتایج شبیه سازی، دقت و صحت تحلیل­ها را در قسمت­های مختلف نشان می­دهد.

 

کلید واژگان: پراکندگی- بریلوئن- فیبر

فهرست مطالب

 

 

عنوان                                                                             صفحه

 

فصل اول: مقدمه

1-1- معرفی.. 2

1-2- هدفها و سرنوشتارها 4

 

فصل دوم: اصول پراکندگی نور

2-1- مقدمه. 7

2-2- پراکندگی القایی بریلوئن.. 7

2-3- خلاصه فصل.. 17

 

فصل سوم:  فیبر نوری و مشخصه های آن

3-1- مقدمه. 20

3-2- بازتاب کلی داخلی.. 20

3-3- منابع نوری.. 24

3-3-1- دیود های نور افشان (LEDs) 24

3-3-2- دیود های لیزری.. 25

3-4- مزایا و معایب فیبر نوری.. 27

3-4-1- تفرق.. 28

3-4-2- جذب.. 28

3-4-3- پاشندگی.. 29

3-4-4- اثرهای غیر خطی های فیبر. 33

3-4-5- مشکلات پراکندگی.. 34

3-5- انواع فیبر نوری.. 36

3-5-1- فیبر چند مدی.. 36

3-5-2- فیبر تک مد. 37

3-5-3- فیبر های (DSF) dispersion – shifted. 38

3-6- سرعت انتقال اطلاعات در فیبر نوری.. 39

3-6-1- سرعت فاز. 39

3-6-2-  سرعت گروه. 40

3-7- خلاصه. 43

 

فصل چهارم:  پراکندگی بریلوین در فیبر نوری و مشخصه های آن

4-1- مقدمه. 45

4-2- تئوری و روش ایجاد پراکندگی بریلوین و عملکرد آن.. 46

4-3- پراکندگی بریلوین خود برانگیخته. 47

4-4- پراکندگی بریلوین برانگیخته شده در فیبر نوری.. 49

4-5- توان آستانه بریلوین و ضریب تقویت بریلوین.. 52

4-6- خلاصه فصل.. 55

 

فصل پنجم: پراکندگی بریلوئن بر انگیخته آبشاری در فیبر نوری

5-1- مقدمه. 57

5-2- SBS بدون بازخورد. 59

5-3- سیستم با بازخورد و SBS مرتبه بالا. 63

5-4- اثر SBS آبشاری بر سیگنال.. 67

5-5- حل معادلات دیفرانسیل جفت شده پراکندگی بریلوین برانگیخته شده. 67

5-5-1- جواب تقریبی معادلات دیفرانسیل جفت شده. 70

5-5-2- جواب تحلیلی و دقیق معادلات دیفرانسیل جفت شده. 71

5-5-3- شبیه سازی و مقایسه آن: 74

5-6- خلاصه فصل.. 79

 

نتیجه گیری و پیشنهادات… 81

 

فهرست منابع و مآخذ.. Error! Bookmark not defined.

 

 

 

 

 

 

فهرست شکل ها

 

عنوان                                                                                    صفحه

 

شکل (1- 1) پراکندگی خود بر انگیخته و پراکندگی بر انگیخته شده . 3

شکل (2- 1).شماتیک پراکندگی القایی بریلوئن. 8

شکل (2- 2) شماتیک تولید کننده پراکنندگی القایی بریلوئن. 9

شکل (2- 3) شماتیک تقویت کننده پراکندگی القایی بریلوئن. 9

شکل (2- 4) وابستگی انعکاس SBS به بهره سیگنال کوچک. 16

شکل (2- 5) توزیع شدت استوکس و لیزر در ناحیه بر همکنش تولید کننده SBS. 17

شکل (3- 1) زاویه تابش و ضریب شکست… 21

شکل (3- 2) قانون اسنل.. 22

شکل (3- 3) بازتاب کلی.. 22

شکل (3- 4) زاویه پذیرش… 23

شکل (3- 5) فیبر نوری.. 23

شکل (3- 6) LED با انتشار سطحی.. 24

شکل (3- 7) LED با انتشار لبه ای.. 25

شکل (3- 8) مقایسه گسیل نور بین LED و دیود لیزری.. 26

شکل (3- 9) توزیع فضایی شدت پرتو LED و لیزر. 26

شکل (3- 10) تفرق نور. 28

شکل (3- 11) فیبر با هسته پهن. 29

شکل (3- 12) فیبر با هسته باریک… 30

شکل (3- 13) منحنی تغییرات اتلاف بر حسب طول موج.. 31

شکل (3- 14) فیبر چند مدی.. 36

شکل (3- 15) مقطع عرضی فیبر چند مدی.. 36

شکل (3- 16) فیبر DSF. 38

شکل (5- 1) توان خروجی استوکس مرتبه دوم (I3 ) بر اساس تغییرات توان ورودی (I1 ). 62

شکل (5- 2) طیف نوری یک فرآیند SBS ساده. 63

شکل (5- 3) ساختار SBS آبشاری. 64

شکل (5- 4)  طیف خروجی SBS آبشاری. 66

عنوان                                                                                    صفحه

 

شکل (5- 5) رفتار رزونانس بهره بریلوین. 69

شکل (5- 6) اندازه گیری توان آستانه بریلوین فیبر استاندارد تک مد با طول km15 با در نظر گرفتن تلفات فیبر. 75

شکل (5- 7) خروجی تاخیر یافته یک سیگنال بر اساس SBS برای سه توان مختلف از یک   پمپ CW. 77

شکل (5- 8) طیف بهره سیگنال بر اساس SBS برای سه توان مختلف از یک پمپ  CW. 78

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 110
|
امتیاز مطلب : 5
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشکده علوم

پایان نامه­ی کارشناسی ارشد در رشته ­ی فیزیک- هسته ای

بررسی واپاشی دو بتایی

استاد راهنما

دکتر زهره کارگر

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

واپاشی دو بتایی  فرایند ضعیفی است که بطور خود به خود دو نوترون در هسته به دو پروتون تبدیل می شوند. به منظور پایستگی بار باید دو الکترون ساتع شود. همچنین اگر عدد لپتونی پایسته باشد دو آنتی نوترینو نیز ساتع می شود. چنین فرایندی با پایستگی عدد لپتونی ( واپاشی  ) در چندین هسته مشاهده شده است. اگر پایستگی عدد لپتونی نقص شود، برای مثال انتشار نوترینوهای مایورانا، نوع دیگری از واپاشی که هیچ نوترینویی ساتع نمی شود، واپاشی ، اتفاق می افتد، هر چند که این نوع واپاشی مشاهده نشده است. میزان واپاشی که از طریق نوترینوهای مایورانا سبک انجام می شود وابسته به مقیاس جرمی مطلق نوترینو است.

در این کار، واپاشی تک بتایی و دو بتایی و برخی از خواص نوترینوها همچون جرم و نوسانات نوترینو را مورد مطالعه قرار داده ایم. مدهای مختلف واپاشی دو بتایی و همچنین عناصر ماتریس هسته ای مربوط به واپاشی  بررسی شده ونیمه عمر های  آزمایشی مطالعه شده اند. در آخر محاسبات عناصر ماتریس هسته ای واپاشی  و  مقایسه می گردند.

فهرست مطالب

عنوان                                                                                                                      صفحه

فصل اول: مقدمه………………………………………………………………………………………. 2

فصل دوم: واپاشی تک بتایی

2- 1 تاریخچه نوترینو……………………………………………………………………………………. 5

2-1- 1 انواع واپاشی ……………………………………………………………………………… 5

2-1-2 مدل استاندارد نوترینو…………………………………………………………….. 9

2-1-3 جرم نوترینو …………………………………………………………………………… 10

2-1-4 پیشنهاد مایورانا…………………………………………………………………………….. 11

2-1-5 بررسی اختلافات…………………………………………………………………………. 11

2-2 نوسانات نوترینویی……………………………………………………………………………. 12

2-2-1 نوترینوهای خورشیدی……………………………………………………………… 14

2-2-2 مسئله نوترینوی خورشیدی…………………………………………………………… 17

2-2-3 نوترینوهای اتمسفری…………………………………………………………………… 19

2-3 شکل طیف بتا و نیمه عمر……………………………………………………………………… 20

2-3-1فضای فاز فرایندهای دو سه جسمی……………………………………………………… 20

2-3-2 شکل طیف بتا………………………………………………………………………………. 23

 عنوان                                                                                                   صفحه

2-3-3 نیمه عمر کل در واپاشی بتایی……………………………………………………… 25

2-4 رده بندی در واپاشی بتایی………………………………………………………….. 27

2-4-1 برهم کنش ضعیف مدل غیر نسبیتی بدون اسپینی……………………. 27

2-4-2 معرفی اسپین ذاتی……………………………………………………………….. 30

2-4-3 گذارهای فرمی و گاموف-تلر…………………………………………………. 30

2-4-4 فرآیند تسخیر الکترونی………………………………………………………….. 31

2-4-5 فرایند بتای معکوس………………………………………………………………. 32

فصل سوم: واپاشی دوبتایی

3-1 واپاشی دوبتایی………………………………………………………………….. 35

3-1-1 مدهای واپاشی دوبتایی……………………………………………………. 36

3-1-2 هسته های واجد شرایط واپاشی دوبتایی……………………………… 38

3-1-3 واپاشی های حالت برانگیخته……………………………………………….. 39

3-2 میزان واپاشی دوبتایی دو نوترینویی……………………………………………. 41

3-3میزان واپاشی دوبتایی بدون نوترینویی………………………………………. 43

3-4عناصر ماتریس هسته ای…………………………………………………………. 45

3-4-1 روش محاسبه  …………………………………………………………. 46

3-5 جرم موثر مایورانا……………………………………………………………… 49

3-5-1 سلسله مراتب جرم های نوترینو…………………………………….. 51

3-5-2 سلسله مراتب معکوس جرم های نوترینو…………………………… 52

3-5-3 طیف جرمی نوترینوی شبه تبهگن…………………………………. 53

عنوان                                                                                               صفحه

فصل چهارم: روشهای آزمایشی و چیدمان واپاشی دو بتایی

4-1 اندازه گیری های پیشین………………………………………………………… 56

4-2 روش آزمایشی…………………………………………………………………………. 58

4-2-1 آشکا سازی اشعه  ………………………………………………………………… 59

4-2-2 منبع واپاشی دو بتایی…………………………………………………………… 60

4-2-3 سپر غیر فعال………………………………………………………………… 60

4-2-4 سپر فعال……………………………………………………………………… 61

4-2-5 تجهیزات تحقیقات زیر زمینی ………………………………………. 62

4-2-6 الکترونیک…………………………………………………………………….. 64

4-3 آزمایش NEMO-3………………………………………………………………….. 66

فصل پنجم: عناصر ماتریسی و نیمه عمرها

5-1 عناصر ماتریس هسته ای…………………………………………………….. 71

5-1-1 همبستگی کوتاه برد…………………………………………………………. 72

5-2 مقدارهای نیمه عمر واپاشی…………………………………………………… 76

5-3 مقدارهای نیمه عمر واپاشی برای مدهای دیگر واپاشی دوبتایی بدون نوترینو…….. 82

5-4 بررسی رفتار متفاوت عناصر ماتریس  و ………………………………… 89

فصل ششم: نتایج…………………………………………………………………… 95

 فهرست منابع………………………………………………………………………… 97

مقدمه

واپاشی  محصول برهم کنش ضعیف یا نیروی هسته ای ضعیف است که در آن الکترون با استفاده از انرژی موجود در لحظه واپاشی از هسته خارج می شود. طیف پیوسته الکترون ها نشان دهنده تولید ذره دیگری در این واپاشی است که فرمی آن را نوترینو نامید. پایستگی بار الکتریکی ایجاب می کند که نوترینو خنثی باشد و ضمنا اسپین آن  است. از آنجا که برهم کنش نوترینو با ماده ضعیف است، وجود آن از طریق واپاشی بتای معکوس مشاهده شد. فرمی دریافت که اگر نوترینو جرم در حال سکون داشته باشد می تواند شکل طیف بتا و مکان نقطه نهایی در طیف را تغییر دهد. بهترین حد بالا که توسط Mainz در سال 2005 بدست آمده  2.3است. در فصل اول، مقدمه، به شرح کلی مطالب پرداخته شده است، مطالب مورد مطالعه در این موارد در فصل دوم آمده است.

روش دیگر در تعیین جرم نوترینو واپاشی دو بتایی بدون نوترینو یا محاسبات کیهان شناسی است که در آن به فرضیات تئوری زیادی نیاز است. واپاشی دو بتایی فرایند نادری است که درآن عدد اتمی  دو واحد تغییر می کند در حالی که عدد جرمی  ثابت می ماند. به علت نیمه عمر طولانی از مرتبه 1020 تا 1023 سال آشکار سازی این واپاشی های نادر بسیار دشوار است، مدهای واپاشی دو بتایی  و  هستند. مشاهده واپاشی دو بتایی بدون نوترینو، ، بی درنگ بیانگر آن است که نوترینوها ذرات مایورانا هستند و مقیاس جرمی تعیین می شود. اما بدون محاسبه عناصر ماتریس هسته ای که میزان واپاشی را تعیین می کند در مورد جرم به طور کمی نمی توان به نتیجه ای رسید.

از نظر تئوری سعی بر آن است که از روش های بس ذره ای استفاده شود تا امکان چنین محاسباتی را میسر کند. برای اینکه محاسبات تئوری محک زده شوند از مشاهدات واپاشی  و   و واپاشی دو بتایی با دو نوترینو، ، جهت مقیاس بندی آنها استفاده می شود.جهت محاسبه عناصر ماتریسی، ، از دو روش استفاده می شود: تقریب فضای فاز تصادفی و مدل پوسته ای هسته ای . در  کسر بزرگی از نوکلئون ها “فعال” در نظر گرفته شده و بنابر این نوکلئون ها در فضای تک ذره ای بزرگی حرکت دارند در حالی که در  کسر کوچکی از نوکلئون ها در فضای تک ذره ای کوچکی هستند و نوکلئون ها می توانند همبسته باشند. در فصل سوم واپاشی دو بتایی همراه با جزئیات مورد نیاز و روش های محاسبه عناصر ماتریسی ارائه شده است. فصل چهارم به بیان روش های آزمایشی بکار رفته جهت تعیین نیمه عمر واپاشی ها پرداخته شده است. نتایج حاصله در خصوص نیمه عمرهای اندازه گیری شده و نتایج محاسبات مختلف عناصر ماتریس هسته ای در فصل پنجم و نهایتا نتایج در فصل ششم بیان شده است.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 111
|
امتیاز مطلب : 5
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده علوم

 

پایان نامه­ی کارشناسی ارشد در رشته­ی فیزیک- ماده چگال

بررسی خواص ترمودینامیکی نانولایه هلیم- III

استاد راهنما

دکتر غلامحسین بردبار

دی ماه 1391

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

مایع هلیم- III مایعی از اتم­های فرمیونی بشدت برهمکنش کننده است که در دمای صفر کاملاً متفاوت با مایعات عادی رفتار می­کند. آمار فرمی یک لایه نازک هلیم- III می­تواند به­صورت یک هندسه دوبعدی ایده­آل بررسی شود. ما از روش وردشی پایین­ترین مرتبه مقید بر اساس بسط خوشه­ای تابعی انرژی، برای محاسبه برخی ویژگی­های مایع هلیم- III دوبعدی با درنظر گرفتن پتانسیل­های لنارد- جونز و عزیز استفاده کرده­ایم. نتایج ما نشان می­دهد که طول همبستگی با افزایش چگالی کاهش می­یابد. همچنین می­بینیم که نتایج تابع همبستگی با پتانسیل­های لنارد- جونز و عزیز تقریباً مشابه هستند. محاسبات ما همچنین نشان می­دهد که برای تمام مقادیر چگالی، منحنی انرژی کل بر ذره هیچ مینیممی ندارد. این نشان می­دهد سیستم مایع هلیم- III دوبعدی حالت مقیدی ندارد. محاسبات نشان می­دهد که معادله حالت سیستم با پتانسیل عزیز سخت­تر از پتانسیل لنارد- جونز است.

 

 

فهرست مطالب

عنوان                                                                                                صفحه

 

فصل اول:مقدمه

1-1- تولید هلیم……………………………………………………………………………………………………………….. 2

1-2- جامدات و مایعات کوانتومی……………………………………………………………………………………. 3

1-3- گاز فرمی و مایع فرمی…………………………………………………………………………………………….. 6

1-4- مروری بر برخی از اندازه­گیری­های انجام شده روی ……………………………………. 8

1-4-1- خواص گرمایی………………………………………………………………………………………………….. 8

1-4-2- رسانندگی گرمایی……………………………………………………………………………………………. 10

1-4-3- پذیرفتاری مغناطیسی……………………………………………………………………………………… 12

1-5- اهداف رساله…………………………………………………………………………………………………………….. 14

 

فصل دوم:نانولایه هلیم- III

2-1- مقدمه……………………………………………………………………………………………………………………….. 16

2-2- تاریخچه نانو……………………………………………………………………………………………………………… 16

2-3- اصول بنیادی نانو……………………………………………………………………………………………………… 17

2-4- تقسیم بندی نانومواد  …………………………………………………………………………………………….. 18

2-4-1- نانومواد صفر بعدی…………………………………………………………………………………………… 18

2-4-2- نانومواد یک بعدی……………………………………………………………………………………………. 19

2-4-3- نانومواد دوبعدی………………………………………………………………………………………………… 19

2-4-4- نانومواد سه بعدی…………………………………………………………………………………………….. 19

2-5- خواص نانومواد…………………………………………………………………………………………………………. 19

2-6- کاربرد نانو در زندگی روزمره…………………………………………………………………………………… 21

2-7- نانولایه­ها…………………………………………………………………………………………………………………… 22

2-8- نانولایه هلیم…………………………………………………………………………………………………………….. 23

2-9- دیاگرام فاز فیلم هلیم-III………………………………………………………………………………………. 24

2-10- مروری بر برخی کارهای انجام شده روی نانو لایه هلیم-III…………………………….. 25

 

فصل سوم:

 

مروری بر روش­های بس­ذره­ای در محاسبات شاره­های کوانتومی

3-1- مقدمه……………………………………………………………………………………………………………………….. 32

3-2- روش هارتری- فوک………………………………………………………………………………………………… 32

3-3- روش مونت کارلو- تابع گرین…………………………………………………………………………………. 33

3-4- بسط بروکنر- بتِ- گلدستون………………………………………………………………………………….. 34

3-5- نظریه جاسترو………………………………………………………………………………………………………….. 36

3-6- روش اختلالی پایه­های همبسته…………………………………………………………………………….. 37

3-6-1-روش پایه­های همبسته…………………………………………………………………………………….. 37

3-6-2- روش عملگر همبستگی…………………………………………………………………………………… 38

 

فصل چهارم:بسط خوشه­ای

4-1- مقدمه………………………………………………………………………………………………………………………… 41

4-2- خصوصیات تابع همبستگی  ………………………………………………………………………………….. 41

4-3- محاسبه مقدار چشمداشتی انرژی………………………………………………………………………….. 42

 

فصل پنجم:

 

محاسبات

5-1- مقدمه……………………………………………………………………………………………………………………….. 50

5-2- محاسبه­ی انرژی خوشه­ی یک جسمی بر ذره ( )……………………………………………. 50

5-3- محاسبه­ی انرژی خوشه­ی دو جسمی بر ذره ( )……………………………………………… 51

 

فصل ششم:بحث و نتیجه­گیری

بحث و نتیجه­گیری……………………………………………………………………………………………………………… 57

فهرست شکل ها

عنوان                                                                                                              صفحه

 

شکل (1-1): مقایسه گرمای ویژه مولی گاز فرمیونی با گاز بوزونی و گاز کلاسیکی. منقار (Cusp) مشخصه­ی چگالش بوز- انیشتینی و ناحیه خطی (Linear) گاز فرمی- دیراک تبهگن

است ……………………………………………………………………………………………………………………………………. ……………..7

شکل (1-2): نتایج تجربی گرمای ویژه مایع  بر حسب دما …………………………………………………..10

شکل (1-3): منحنی چسبندگی بر حسب دما ………………………………………………………………. ……………11

شکل (1-4): رسانندگی گرمایی بر حسب دما در فشار پایین در مقیاس لگاریتمی…….. …………..12

شکل (1-5): تابع  بر حسب دمای کاهیده  برای فشارهای صفر

تا ………………………………………………………………………………………………………………… …………..14

شکل (2-1): دیاگرام فاز فیلم  جذب شده روی ورقه گرافیت بر حسب دما …….. …………..25

شکل (2-2): نتایج محاسبات مونت- کارلو برای انرژی کل بر ذره  برحسب

چگالی ……………………………………………………………………………. ……..27

شکل (2-3): نتایج تجربی اندازه­گیری  بر حسب ضخامت  در

دمای ……………………………………………………………………………………………………. ………….28

شکل (2-4): ظرفیت گرمایی بصورت تابعی از ضخامت و مقایسه آن با نتایج

مرجع [39]……………………………………………………………………………………………………………………….. ………….29

شکل (2-5): نتایج تجربی اندازه­گیری پذیرفتازی مغناطیسی بر حسب دما برای فیلم­های

جذب شده روی گرافیت در چندین ضخامت بعد از یک تک لایه کامل……………… …………..30

شکل (6-1): تابع همبستگی بر حسب فاصله با پتانسیل لنارد- جونز (خط چین) و عزیز (خط پر) و پتانسیل برهمکنش بین ذرات برحسب فاصله……………………………………………………………………………………………………………………… ………….58

شکل (6-2): انرژی جنبشی سیستم هلیم-III دوبعدی بر حسب چگالی……………………. ………….59

شکل (6-3): انرژی خوشه­ی دوجسمی بر حسب چگالی با پتانسیل­های لنارد- جونز (lj)

و عزیز…………………………………………………………………………………………………………………………………. ………….60

شکل (6-4): نتایج محاسبات انرژی کل بر ذره سیستم مایع  دوبعدی بر حسب چگالی با

پتانسیل­های لنارد – جونز(LJ) و عزیز…………………………………………………………………………….. …………..62

شکل (6-5): معادله حالت سیستم دوبعدی با پتانسیل­های لنارد – جونز (LJ) و عزیز …………..63

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 110
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

پایان نامه کارشناسی ارشد در رشته فیزیک (گرایش هسته­ ای )

پارامتر چگالی تراز هسته­ای میکروسکوپی برای ایزوتوپ های Si، Fe، Mo و Dy

استاد راهنما:

دکتر زهره کارگر

شهریورماه1392

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

هدف این رساله محاسبه میکروسکوپی پارامتر چگالی تراز هسته­ای برای ایزوتوپ­های Si، Fe، Mo و Dy بر حسب انرژی برانگیختگی است. پارامتر چگالی تراز هسته­ای از اجزا مهم محاسبات آماری سطح مقطع واکنش­های هسته­ای به شمار می­رود. علاوه بر آن پارامتر گاف نیز بر حسب انرژی برانگیختگی بدست آمده است.

برای محاسبه این پارامترها از مدلBCS با در نظر گرفتن برهم­کنش زوجیتیاستفاده شده است. بر اساس اطلاعات تجربی، برهم­کنش زوجیتی میان نوکلئون­های هسته وجود دارد. مدل BCS روشی مناسب جهت بررسی خواص ترمودینامیکی سیستم­های فرمیونی دارای برهم­کنش زوجیت است. در این مدل با بکار گیری محتمل­ترین مقدار پارامتر گاف سایر کمیات ترمودینامیکی محاسبه می­شود. پارامتر گاف معیاری از برهم­کنش زوجیت است.

نتایج محاسبات نشان می­دهد که پارامتر چگالی تراز هسته­ای به انرژی برانگیختگی بستگی دارد و در انرژی برانگیختگی زیاد به مقدار  که از مدل گاز فرمی بدست می­آید میل می­کند.

 

 

 

 

فهرست مطالب

 

عنوان                                                                                                          صفحه

فصل اول: مقدمه 1
   
فصل دوم: چگالی حالات وچگالی تراز 8
  2-1 چگالی حالت بر حسب انرژی برانگیختگی 9
  2-2 چگالی حالت بر حسب انرژی برانگیختگی و تعداد ذرات 11
  2-3 وابستگی چگالی حالت به تکانه زاویه­ای 16
   
فصل سوم: برهم­کنش­زوجیتی 20
  3-1 مقدمه 21
  3-2 مبانی مکانیک کوانتومی 22
  3-3 هامیلتونی ذرات برهم­کنش­کننده 25
  3-4 برهم­کنش­زوجیتی 28
  3-5 محاسبه ویژه مقادیر هامیلتونی 28
   
فصل چهارم: خصوصیات ترمودینامیکی و چگالی تراز 34
  4-1 تابع پارش بزرگ 35
  4-2 تعداد ذرات سیستم 37
  4-3 انرژی سیستم 38
  4-4 آنتروپی سیستم 41
  4-5 چگالی حالت سیستم 42
  4-6 بررسی سیستم شامل دو نوع ذره 43
فصل پنجم: محاسبات و نتایج 47
5-1 محاسبات 48
5-2 نتایج 70
فهرست منابع 72
چکیده به زبان انگلیسی 74
کلید واژه 75

فهرست جدول­ها

 

عنوان و شماره صفحه
5- 1 ضرایب c1 و c2 در فرمول 50
5-2 مقادیر اولیه پارامتر گاف 70

فهرست شکل­ها

 

عنوان صفحه
شکل 1-1 تعداد ترازها بر حسب انرژی برانگیختگی برای هسته 3
شکل 5-1 چگالی تراز آزمایشگاهی و محاسبه شده از مدل  برای هسته 163Dy 49
شکل 5-2 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 27Si 52
شکل 5-3 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 27Si 52
شکل 5-4 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 28Si 53
شکل 5-5 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 28Si 53
شکل 5-6 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 56Fe 54
شکل 5-7 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 56Fe 54
شکل 5-8 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 57Fe 55
شکل 5-9 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 57Fe 55
شکل 5-10 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 93Mo 56
شکل 5-11 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 93Mo 56
شکل 5-12 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 94Mo 57
شکل 5-13 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 94Mo 57
شکل 5-14 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 95Mo 58
شکل 5-15 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 95Mo 58
شکل 5-16 توان دوم آنتروپی بر حسب انرژی بر انگیختگی برای هسته 96Mo 59
شکل 5-17 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 96Mo 59
شکل 5-18 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 97Mo 60
شکل 5-19 پارامتر چگالی تراز هسته­ای بر حسب انرزی برانگیختگی برای هسته 97Mo 60
شکل 5-20 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 98Mo 61
شکل 5-21 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 98Mo 61
شکل 5-22 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 160Dy 62
شکل 5-23 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 160Dy 62
شکل 5-24 توان دوم آنتروپی برحسب انرژی برانگیختگی برای هسته 161Dy 63
شکل 5-25 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 161Dy 63
شکل 5-26 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 162Dy 64
شکل 5-27 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 162Dy 64
شکل 5-28 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 163Dy 65
شکل 5-29 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 163Dy 65
شکل 5-30 توان دوم آنتروپی بر حسب انرژی برانگیختگی برای هسته 164Dy 66
شکل 5-31 پارامتر چگالی تراز هسته­ای بر حسب انرژی برانگیختگی برای هسته 164Dy 66
شکل 5-32 پارامتر گاف بر حسب انرژی برانگیختگی برای هسته­های 67
شکل 5-33 پارامتر گاف برحسب انرژی برانگیختگی برای هسته­های 67
شکل 5-34 پارامتر گاف برحسب انرژی برانگیختگی برای هسته­های 68
شکل 5-35 پارامتر گاف برحسب انرژی برانگیختگی برای هسته­های

69

 

 

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 88
|
امتیاز مطلب : 2
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد علوم و تحقیقات کرمان

پایان نامه کارشناسی ارشد رشته فیزیک (M.A.)

گرایش حالت جامد

عنوان:

بررسی پراکندگی بریلوئین و کاربرد آن در تولید لیزر فیبری بریلوئین

استاد راهنما:

دکتر محمدرضا رضازاده شیرازی

 

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

چکیده 1

فصل اول: کلیات تحقیق

1-1- توضیحات مقدماتی.. 3

1-2- پراکندگی برانگیخته بریلوئین در فیبرهای نوری.. 4

1-3- لیزر فیبر بریلوئین – بررسی اجمالی.. 6

1-4- هدف این فرضیه ها 8

1-5- تحقیقات انجام شده 8

فصل دوم: لیزهای فیبری بریلوئین

2-1- انتشار موج الکترومغناطیس در محیط های خطی و غیر خطی.. 11

2-2- اثرات غیر خطی در فیبر های نوری.. 12

2-3- اصول پراکندگی برانگیخته بریلوئین.. 14

2-4- نظریه پایه. 15

2-5- فرایند فیزیکی.. 19

2-6- بهره طیف بریلوئین.. 22

فصل سوم: تولید لیزرهای فیبری بریلوئین

3-1- مقدمه. 27

3-2- آستانه بریلوئین.. 30

3-3- لیزر. 31

3-4- تولید لیزرهای فیبری بریلوئین.. 35

3-5- تولید لیزرهای فیبری بریلوئین چند طول موجی.. 38

3-5-1 تولید لیزر فیبری بریلوئین چند طول موجی در کاواکهای حلقوی.. 38

3-5-2 تولید لیزر فیبری بریلوئین چند طول موجی در کاواک‌های خطی.. 41

فصل چهارم: بررسی پراکندگی بریلوئین و کاربرد آن در تولید لیزر فیبری بریلوئین

4-1- مقدمه. 44

4-2- مرحله اول: بررسی پارامتر ضریب انعکاس در عملکرد لیزر فیبری بریلوئین در طول ثابت.. 46

4-3- مرحله دوم: بررسی تاثیر تغییر طول در بازده و محاسبه  ضریب انعکاس بهینه در لیزر فیبری بریلوئین   48

4-4- مرحله سوم: محاسبه بازده برای ضریب انعکاس بهینه در طول های مختلف… 49

4-5- پیکربندی لیزر فیبری بریلوئین جدید با توان خروجی بالا. 50

4-5-1 چکیده مطلب.. 50

4-5-2 مقدمه. 50

4-5-3 تنظیمات آزمایشی.. 51

4-5-4 نتیجه و بررسی.. 52

4-5-5 نتیجه گیری.. 54

فصل پنجم: نتیجه گیری

5-1- نتیجه و پیشنهادات.. 57

منابع و ماخذ. 59

فهرست منابع انگلیسی.. 59

پیوست ها 63

پیوست الف… 63

چکیده انگلیسی.. 66
فهرست جداول

جدول(4-1): داده های مورد استفاده برای شبیه سازی.. 45

جدول (4-2): شدت آستانه لیزر برای طول های مختلف… 50
فهرست اشکال

شکل(2-1): نمودار فرکانس بر حسب عددموج برای دو شاخه فونون نوری و صوتی. 18

شکل(2-2): شمایی از مقایسه امواج استوکس و آنتی استوکس از نظر طول موج. 19

شکل (2-3) طیف بهره بریلوئین از 3 فیبر در : (a) فیبر هسته سیلیکا. (b) فیبر روکش فشرده و (c) فیبر تغییر پراکندگی.. 23

شکل (3-1): اختلاف شدت در پمپ و استوکس… 31

شکل (3-2): طرح پیکربندی کاواک خطی (a)  و کاواک حلقوی (b)  را نشان می دهد. 37

شکل(3-3): یک کاواک حلقوی برای تولید لیزر فیبری بریلوئین را نمایش می دهد. 37

شکل(3-4): مجموعه پیشنهادی تجربی برای تولید لیزر چند طول موجی با جدائی GHz 10 و GHz 20  39

شکل(3-5): تولید لیزر چند طول موجی با فاصله جدائی nm 16/0 (20 گیگاهرتز) بین خطوط متوالی در جهت‌های مستقیم و معکوس را نشان می‌دهد. 40

شکل(3-6): تولید یک لیزر چند طول موجی با تعداد 8 خط و جدایی بین خطوط nm 08/0 که از ترکیب موجهای در شکل قبل حاصل شده است.. 40

شکل (3-7): کاواک خطی پیشنهادی برای تولید لیزر فیبری چند طول موجی بریلوئین را نشان می‌دهد   41

شکل (3-8): لیزر چند طول موجی حاصل در طیف خروجی کاواک خطی را با تغییرات نسبتهای متفاوت پایه B از گرداننده اپتیکی OC2 را نشان می‌دهد. 42

شکل (4-1): شدت استوکس بر حسب شدت پمپ در طول 1 متر. 47

شکل 4-2: شدت استوکس بر حسب شدت پمپ.. 47

شکل(4-3): بازده مرتبه اول استوکس در ضریب های انعکاس های مختلف… 48

شکل(4-4): شدت استوکس بر حسب شدت پمپ در ضریب انعکاس بهینه 0.5 در چهار طول 0.3 ، 0.5، 1 و 1.5 متر(به ترتیب از بالا به پایین). 49

شکل(4-5): در این نمودار بازده در ضریب انعکاس بهینه و در طولهای0.3، 0.5، 1 و 1.5 رسم شده است. 49

شکل(4-6): تنظیمات آزمایشی برای (a) لیزر فیبر بریلوئین معمولی و (b) پیکربندی جدید فیبر بریلوئین ارائه شده  52

شکل (4-7): مقایسه طیف خروجی لیزر فیبربریلوئین بین پیکربندی معمولی (پیکربندی a) و پیکربندی جدید لیزر فیبر بریلوئین ارائه شده (پیکربندی b) 53

شکل (4-8): جستجوی خروجی لیزر فیبر بریلوئین در نسبت های متصل کننده خروجی مختلف. پیوست آن شکل بزرگ شده ناحیه قله خروجی است.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

 



:: بازدید از این مطلب : 106
|
امتیاز مطلب : 2
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده‌ی علوم

پایان نامه‌ی کارشناسی ارشد در رشته‌ فیزیک

گرایش اپتیک و لیزر

عنوان:

بررسی تغییرات میدان الکتریکی در ساختار نانونقطه کوانتومی با نانو پوسته فلزی و جدا کننده دی الکتریک

استاد راهنما:

دکتر عبدالناصر ذاکری

 

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

1فصل اول: مقدمه    1

2فصل دوم: ویژگی های ساختار مورد بررسی

2-1ویژگی نقطه کوانتومی
8
2-1-1اکسیتون
8
2-2پلاسمون سطحی
12
2-3ساختار نقطه کوانومی پلاسمونی
13
2-4-روش ریاضی استفاده شده برای محاسبه ی تابع دی الکتریک نانوپوسته فلزی
14
2-5بررسی مدل درود
15
2-5-1مدل درود در فلزات
15
2-5-2-اصلاح مدل درود برای نانو فلزات
17
2-5-3-نمودارهای تابع دی الکتریک وابسته به اندازه نانو فلزات نجیب
18

3فصل سوم:نحوه انجام محاسبات

3-1بسط موج تخت بر حسب هماهنگ های کروی برداری
24
3-2ویژگی های هماهنگ های کروی برداری
33
3-2-1-راست هنجارش مدهای M و N
33
3-2-2-راست هنجارش مدهای M و.M
34
3-2-3-راست هنجارش مدهای N و N
37
3-3بسط موج تخت فرودی بر حسب هماهنگ های کروی در محیط اطراف(آب)
38
3-3-1محاسبه میدان الکتریکی موج فرودی
38
3-3-2بسط میدان  مغناطیسی موج تخت فرودی
45
3-3-3-استفاده از شرایط مرزی برای به دست آوردن بسط میدان الکتریکی

و مغناطیسی داخل نانوذره
46
3-3-4-میدان الکتریکی در نقطه کوانتومی
47
3-3-5میدان پراکنده شده
47
4فصل چهارم:محاسبات عددی و نتایج

4-1تغییرات میدان الکتریکی بر حسب ضخامت لایه دی الکتریک در طول موج 800نانومتر
53
4-2 تغییرات میدان الکتریکی بر حسب ضخامت لایه دی الکتریک در طول موج 950نانومتر
56
4-3تغییرات میدان الکتریکی بر حسب گذردهی نسبی دی الکتریک در ضخامت های

مختلف نانوفلز نجیب در طول موج 800نانومتر
59
4-4تغیییرات میدان الکتریکی بر حسب گذردهی نسبی دی الکتریک در ضخامت های

مختلف نانوفلز نجیب در طول موج 950نانومتر
62
4-5 تغییرات میدان الکتریکی به عنوان تابعی از گذردهی نسبی دی الکتریک در ضخامت

ثابت 2 نانومتر
64
4-6 تغییرات میدان الکتریکی در نقطه کوانتومی بر حسب افزایش شعاع در 800 نانومتر

و ضخامت نانوپوسته فلزی 2 نانومتر
66
5- فصل پنجم:نتیجه‌گیری و کارهای آینده

5-1پیشنهادات ادامه کار
69
منابع           83

پیوست‌ها

پیوست الف:کد نویسی مربوط به تابع دی الکتریک اصلاح شده نانو فلز  75

پیوست ب : حل دوازده معادله دوازده مجهول در متمتیکا 77

پیوست پ: کد نویسی مطلب برای یکی از ضرایب    82

پیوست ت : کد نویسی مطلب برای افزایش میدان در نقطه کوانتومی   84

چکیده و صفحه عنوان به انگلیسی

 

فهرست جدول ها

جدول ‏2‑1: شعاع بوهر اکسیتون و گاف انرژی چند نیمه رسانا…………………………………….. 11

جدول ‏2‑2 :  فرکانس پلاسمای حجمی ،ثابت میرایی ? و سرعت فرمی  برای سه

فلز نجیب مس ، طلا و نقره. 1

 

فهرست شکل ها

شکل ‏2‑1:نوار گاف انرژی نقاط کوانتومی.. 10

شکل ‏2‑2: طیف جذبی و فلورسانس نقاط کوانتومی CdSe در اندازه های مختلف… 11

شکل ‏2‑3: طرح واره نقطه کوانتومی پلاسمونی دو پوسته ای با جدا کننده دی الکتریک… 14

شکل ‏2‑4: نمودار قسمت موهومی تابع دی الکتریک نانو پوسته مس بر حسب طول

موج با احتساب اثر اندازه در ضخامت های متفاوت.. 18

شکل ‏2‑5: نمودار قسمت موهومی تابع دی الکتریک نانوپوسته‌ی طلا بر حسب طول

موج با احتساب اثر اندازه در ضخامت های متفاوت.. 19

شکل ‏2‑6: نمودار قسمت موهومی تابع دی الکتریک نانوپوسته‌ی نقره  بر حسب طول

موج با احتساب اثر اندازه در ضخامت های متفاوت.. 19

شکل ‏2‑7: نمودار قسمت حقیقی تابع دی الکتریک نانوپوسته‌ی مس بر حسب طول

موج با احتساب اثر اندازه در ضخامت های متفاوت در محدودهnm800 تاnm950. 20

شکل ‏2‑8: نمودار قسمت حقیقی تابع دی الکتریک نانوپوسته‌‌ی طلا بر حسب طول

موج با احتساب اثر اندازه در ضخامت های متفاوت در محدودهnm800 تاnm950. 20

شکل ‏2‑9: نمودار قسمت حقیقی تابع دی الکتریک نانوپوستهی نقره بر حسب طول

موج با احتساب اثر اندازه در ضخامت های متفاوت در محدودهnm800 تاnm950. 21

شکل ‏3‑1: نانو ساختار چندلایه کروی شامل نقطه کوانتومی، نانوپوسته فلز نجیب و

جداکننده دی‌الکتریک… 47

شکل ‏4‑1 :نمودارتغییرات میدان الکتریکی بر حسب ضخامت لایه دی الکتریک در

ضخامتهای مختلف نانو پوسته مس درطول موج800 نانومتر. 53

شکل ‏4‑2:نمودار تغییرات میدان به عنوان تابعی از ضخامت لایه دی الکتریک در ضخامت‌های

مختلف نانوپوسته فلز طلا در طول موج 800 نانومتر. 54

شکل ‏4‑3: نمودار تغییرات میدان به عنوان تابعی از ضخامت لایه دی الکتریک در ضخامت

های مختلف نانوپوسته فلز نقره در طول موج 800 نانومتر. 55

شکل ‏4‑4: نمودار تغییرات میدان الکتریکی بر حسب ضخامت لایه دی الکتریک در

ضخامتهای مختلف نانو پوسته مس درطول موج950 نانومتر. 56

شکل ‏4‑5: نمودار تغییرات میدان الکتریکی به عنوان تابعی از ضخامت لایه دی الکتریک

در ضخامت های مختلف نانوپوسته فلز طلا در طول موج 950 نانو متر. 57

شکل ‏4‑6: نمودار تغییرات میدان به عنوان تابعی از ضخامت لایه دی الکتریک در

ضخامت های مختلف نانوپوسته فلز نقره در طول موج 950نانومتر. 58

شکل ‏4‑7 :تغییرات میدان الکتریکی به عنوان تابعی از گذردهی نسبی دی الکتریک

در ضخامت های مختلف نانو پوسته مس در طول موج 800نانومتر. 59

شکل ‏4‑8:تغییرات میدان الکتریکی به عنوان تابعی از گذر دهی نسبی دی الکتریک

در ضخامت های مختلف نانو پوسته طلا در طول موج nm 800. 60

شکل ‏4‑9 :تغییرات میدان الکتریکی به عنوان تابعی از گذردهی نسبی دی الکتریک

در ضخامت های مختلف نانوپوسته نقره در طول موجnm 800. 61

شکل ‏4‑10: تغییرات میدان الکتریکی به عنوان تابعی از گذردهی نسبی دی الکتریک

در ضخامت های مختلف نانوپوسته مس در طول موجnm 950. 62

شکل ‏4‑11: تغییرات میدان الکتریکی به عنوان تابعی از گذردهی نسبی دی الکتریک

در ضخامت های مختلف نانوپوسته طلا در طول موجnm 950. 63

شکل ‏4‑12: تغییرات میدان الکتریکی به عنوان تابعی از گذردهی نسبی دی الکتریک

در ضخامت های مختلف نانوپوسته نقره در طول موجnm 950. 63

شکل ‏4‑13: مقایسه افزایش میدان الکتریکی بر حسب گذر دهی نسبی دی الکتریک برای

سه فلز نجیب در دو طول موج nm800 وnm 950 در ضخامت نانو پوسته

فلزی nm2. 64

شکل ‏4‑14:تغییرات میدان الکتریکی درون نقطه کوانتومی برحسب شعاع نقطه کوانتومی

برای سه فلز نجیب با ضخامت nm2 در طول موج nm 800  و ضخامت لایه

دی­الکتریک nm21. 66

شکل ‏5‑1:نانو ساختار چندلایه کروی شامل نقطه کوانتومی ولایه متناوب دی‌الکتریک و

فلز.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 90
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده­ علوم

پایان­ نامه­ ی کارشناسی ارشد در رشته­ ی فیزیک- حالت جامد

 

بررسی و ساخت نانوسیم­هاو امکان­سنجی تولید میکرومقاومت وکوچک­تر از آن برپایه­ی قالب آلومینای آندیک متخلخل و روش انباشت الکتروشیمیایی

استاد راهنما

دکتر محمود مرادی

 

دی­ماه 1390

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

در این پایان­نامه ابتدا توضیحاتی پیرامون نانوفناوری و بررسی نظری و تولید نانوسیم­ها ارائه شده و سپس­ به بررسی نظری و تجربی مقاومت الکتریکی سیم­های ریز با اندازه­های زیر میکرومتر پرداخته­ایم. در ادامه چندین روش تولید نانوساختارها را مرور کرده و بطور خاص به بررسی ساختار و نحوه­ی تولید قالب­های آلومینای آندیک متخلخل پرداخته­ایم. سپس با توجه به امکانات موجود در آزمایشگاه لایه­نشانی بخش فیزیک دانشگاه شیراز، این قالب­ها را جهت تولید نانوسیم­ها برگزیده­ایم. سپس این قالب­ها را با شرایط مختلف از قبیل الکترولیت­ها و ولتاژهای آندایز مختلف تولید نموده و روش انباشت الکتروشیمیایی را برای تولید نانوسیم درون حفره­های این قالب­ بکار بردیم. الکتروانباشت شیمیایی جهت تولید نانوسیم­ها با سه روش استفاده از ولتاژ مستقیم، تناوبی و پالسی انجام می­گیرد. ما هر سه روش را امتحان کرده و موفق به تولید نانوسیم­های Ag، Zn، Sn و Ag-Zn شدیم. سپس نتایج حاصل را با استفاده از تصاویر میکروسکوپی SEM و آنالیز پرتوی x (XRD) تایید کردیم. همچنین با قرار دادن نمونه­های Zn و Sn درون کوره اقدام به اکسایش آن­ها نموده و الگوی پراش نانوسیم­های ZnO و SnO2 را نیز تهیه نمودیم. در ادامه سعی گردید تا امکان تهیه­ی مقاومت الکتریکی از آرایه­­­ی نانوسیم­های موجود در این قالب بررسی گردد. برای این کار اتصال الکتریکی با دو طرف قالب­های حاوی نانوسیم­های Zn برقرار گردید و مقادیر مقاومت بدست آمده ثبت شد. همچنین محاسباتی برای یافتن مقاومت الکتریکی هر نانوسیم Zn بعد از اکسایش در c3000 انجام پذیرفت و مقداری تقریبی برای مقاومت نانوسیم­های ZnO ارائه گشت.

فهرست مطالب

 

 

عنوان                                                                                                                      صفحه

 

فصل اول:مقدمه

1-1- مقدمه­ای بر نانوتکنولوژی………………………………………………………………………………………………. 2

1-2- روش­های ساخت آرایه­ای از نانوسیم­ها………………………………………………………………………… 3

1-3- ساخت قالب­های حفره­دار……………………………………………………………………………………………… 3

1-4- پرکردن حفره­ها به روش الکتروانباشت شیمیایی……………………………………………………….. 4

1-5- هدف از این پایان­نامه…………………………………………………………………………………………………….. 4

 

فصل دوم: نانوفناوری

2-1- مقدمه……………………………………………………………………………………………………………………………… 7

2-2- دسته­بندی نانوساختارها………………………………………………………………………………………………… 8

2-2-1- فراورده­های نانوی یک بعدی………………………………………………………………………………. 8

2-2-2- فراورده­های نانوی دو بعدی………………………………………………………………………………… 9

2-2-3- فراورده­های نانوی سه بعدی………………………………………………………………………………. 9

2-3- تجهیزات شناسایی نانومواد……………………………………………………………………………………………. 9

2-3-1- میکروسکوپ الکترونی عبوری(TEM)……………………………………………………………….. 10

2-3-2- میکروسکوپ الکترونی روبشی(SEM)……………………………………………………………….. 12

2-3-2-1- بزرگ­نمایی………………………………………………………………………………………………… 12

2-3-2-2- آماده­سازی نمونه………………………………………………………………………………………. 12

2-3-3- میکروسکوپ روبشی تونل زنی(STM)……………………………………………………………….. 13

2-3-4- تولید و خواص اشعه­ی ایکس……………………………………………………………………………. 15

2-4- نانوسیم­ها……………………………………………………………………………………………………………………….. 17

2-4-1- انواع نانوسیم­ها……………………………………………………………………………………………………. 17

2-4-2- کاربرد نانوسیم­ها…………………………………………………………………………………………………. 18

عنوان                                                                                                                      صفحه

 

2-4-2-1- کاربردهای اپتیکی…………………………………………………………………………………….. 18

2-4-2-2- کاربردهای الکترونیکی……………………………………………………………………………… 19

2-4-2-3- کاربرد الکتروشیمیایی………………………………………………………………………………. 19

2-4-2-4- کاربردهای مغناطیسی……………………………………………………………………………… 19

2-4-2-5- کابردهای حسگری……………………………………………………………………………………. 20

 

فصل سوم:خواص الکتریکی مواد کپه­ای و محدود شده

3-1- مقدمه……………………………………………………………………………………………………………………………… 22

3-2- ساختار فضایی جامدات و شبکه­های بلوری…………………………………………………………………. 22

3-3- مواد نیمه­هادی………………………………………………………………………………………………………………. 23

3-3-1- الگوی نوار انرژی نیمه­هادی­ها……………………………………………………………………………. 23

3-4- برخی از خواص و تعاریف در حوزه­ی رسانش مواد بالک…………………………………………… 24

3-4-1- خلوص………………………………………………………………………………………………………………….. 24

3-4-2- حامل­ها………………………………………………………………………………………………………………… 24

3-4-3- جرم موثر……………………………………………………………………………………………………………… 25

3-4-4- مسافت آزاد میانگین…………………………………………………………………………………………… 25

3-4-5- سطح فرمی و پارامترهای مرتبط با آن……………………………………………………………… 26

3-4-6- چگالی حالات سیستم………………………………………………………………………………………… 27

3-4-7- مقاومت الکتریکی………………………………………………………………………………………………… 28

3-4-7-1- علت مقاومت……………………………………………………………………………………………… 29

3-4-7-1-1- در فلزات…………………………………………………………………………………………. 29

3-4-7-1-2- در نیمه­هادی­ها و عایق­ها……………………………………………………………… 29

3-4-7-1-3- در مایعات یونی/الکترولیت­ها…………………………………………………………. 30

3-5- برخی از خواص و تعاریف در حوزه­ی رسانش در مواد با مقیاس ریز………………………… 30

3-5-1- چگالی حالات سیستم­های نانومقیاس………………………………………………………………. 30

3-5-2- مقاومت در مقیاس­های ریز…………………………………………………………………………………. 31

3-5-3- رسانش در سیم­های ریز…………………………………………………………………………………….. 32

3-5-3-1- رسانش در نانوسیم­ها در ناحیه­ی با اثرات کوانتمی………………………………. 32

3-5-3-2- پیشینه­ی محاسبه­ی رسانندگی در ابعاد ریز نزدیک به

مسافت آزاد میانگین……………………………………………………………………………………………………… 33

عنوان                                                                                                                      صفحه

 

3-5-3-3- رسانش در نانوسیم­های بس­بلور با ابعاد نزدیک

به مسافت آزاد میانگین……………………………………………………………………………………………….. 34

3-5-3-4- اندازه­گیری تجربی مقاومت ویژه­ی نانوسیم طلا…………………………………….. 36

3-5-3-5- محاسبات نظری مقاومت ویژه­ی نانوسیم­ها…………………………………………….. 37

3-5-3-6- محاسبات تئوری مقاومت ویژه­ی نانوسیم طلا……………………………………….. 39

3-5-4- نانوسیم­های نیمه­هادی……………………………………………………………………………………….. 41

3-5-4-1- نانوسیم ZnO……………………………………………………………………………………………. 42

 

فصل چهارم: نانوحفره و کاربردهای آن

4-1- مقدمه……………………………………………………………………………………………………………………………. 44

4-2- آندایز آلومینیوم……………………………………………………………………………………………………………… 45

4-3- انواع فیلم اکسیدی آندیک……………………………………………………………………………………………. 45

4-4- ساختار کلی آلومینای آندیک متخلخل………………………………………………………………………… 46

4-5-سینتیک ساخت آلومینای آندیک متخلخل خود نظم یافته……………………………………….. 47

4-5-1- آندایز در رژیم­های جریان ثابت و پتانسیل ثابت………………………………………………. 47

4-5-2- نرخ رشد و انحلال فیلم اکسیدی………………………………………………………………………. 49

4-5-3- آندایز به روش سخت و نرم……………………………………………………………………………….. 50

4-5-4- آندایز پالسی آلومینیوم……………………………………………………………………………………….. 52

4-6- مکانیسم رشد فیلم متخلخل در حضور میدان……………………………………………………………. 54

4-7- رشد حالت پایدار آلومینای متخلخل……………………………………………………………………………. 56

4-8- قطر حفره……………………………………………………………………………………………………………………….. 57

4-9- فاصله­ی بین حفره­ای…………………………………………………………………………………………………….. 58

4-10- ضخامت دیواره…………………………………………………………………………………………………………….. 59

4-11- ضخامت لایه­ی سدی………………………………………………………………………………………………….. 60

4-12- تخلخل…………………………………………………………………………………………………………………………. 60

4-13- چگالی حفره………………………………………………………………………………………………………………… 61

4-14- رشد خود شکل­یافته و رشد با الگو هدایت شده ی آلومینای متخلخل با

نظم بالا …………………………………………………………………………………………………………………………………….. 62

4-15- آندایز دو طرفه…………………………………………………………………………………………………………….. 65

4-16- بهم زدن محلول حین آندایز……………………………………………………………………………………… 66

عنوان                                                                                                                      صفحه

 

4-17- مراحل پیش آندایز……………………………………………………………………………………………………… 66

4-17-1- چربی­زدایی نمونه…………………………………………………………………………………………….. 66

4-17-2- آنیل کردن نمونه……………………………………………………………………………………………… 67

4-17-3- پالیش کردن نمونه…………………………………………………………………………………………… 67

4-18- مقاومت لایه­ی سدی…………………………………………………………………………………………………… 68

4-19- مراحل پس از آندایز…………………………………………………………………………………………………… 68

4-19-1- حل کردن آلومینیوم پشت نمونه……………………………………………………………………. 68

4-19-2- برداشتن لایه­ی سدی………………………………………………………………………………………. 69

4-19-3- نازک­سازی لایه­ی سدی…………………………………………………………………………………… 70

4-20- ساخت نانوساختارها به­کمک قالب AAO………………………………………………………………… 70

4-20-1- نانونقاط، نانوسیم­ها و نانولوله­های اکسید فلز……………………………………………………….. 72

 

فصل پنجم: روش­های تولید نانوساختارها

5-1- مقدمه……………………………………………………………………………………………………………………………… 74

5-2- فرایند لیتوگرافی و محدودیت­ها…………………………………………………………………………………… 74

5-3- روش­های غیرلیتوگرافی………………………………………………………………………………………………… 75

5-3-1- انباشت بخار فیزیکی(PVD)………………………………………………………………………………. 76

5-3-1- 1- کند و پاش………………………………………………………………………………………………. 76

5-3-1-2- تبخیر پرتوی الکترونی……………………………………………………………………………… 76

5-3-2- انباشت بخار شیمیایی(CVD)…………………………………………………………………………… 77

5-3-3- انباشت سل-ژل…………………………………………………………………………………………………… 77

5-3-4- انباشت الکتروفورتیک (EPD)……………………………………………………………………………. 77

5-3-5- انباشت الکتروشیمیایی……………………………………………………………………………………….. 78

5-3-6- انباشت لیزر پالسی (PLD)………………………………………………………………………………… 78

5-4- روش­های ساخت آرایه­ای از نانوسیم­ها………………………………………………………………………… 79

5-4-1- اصول کلی انباشت الکتروشیمیایی……………………………………………………………………. 79

5-4-2- روش­های مختلف الکتروانباشت…………………………………………………………………………. 80

5-4-2-1- آندایز با ولتاژ مستقیم……………………………………………………………………………… 81

5-4-2-2- انباشت با ولتاژ تناوبی………………………………………………………………………………. 81

5-4-2-3- انباشت با ولتاژ پالسی………………………………………………………………………………. 83

عنوان                                                                                                                      صفحه

 

5-4-3- شرایط تاثیر گزار بر الکتروانباشت……………………………………………………………………… 84

5-4-4- الکتروانباشت آرایه­های نانوسیم چندلایه………………………………………………………….. 85

5-4-5- الکتروانباشت نانوسیم­های نیمه­هادی­………………………………………………………………… 86

 

فصل ششم: روش کار

6-1- تهیه­ی نمونه­ها بعنوان قالب ………………………………………………………………………………………… 88

6-1-1- مراحل پیش آندایز……………………………………………………………………………………………… 88

6-1-1-1- انتخاب نمونه­ی اولیه………………………………………………………………………………… 88

6-1-1-2- تمیز کردن نمونه……………………………………………………………………………………… 89

6-1-1-3- بازپخت نمونه……………………………………………………………………………………………. 89

6-1-1-4- پالیش کردن نمونه­…………………………………………………………………………………… 89

6-1-2- آندایز نمونه………………………………………………………………………………………………………….. 92

6-1-2-1- سوار کردن نمونه……………………………………………………………………………………… 93

6-1-2-2- خنک کردن نمونه……………………………………………………………………………………. 93

6-1-2-3- آندایز در V130………………………………………………………………………………………. 94

6-1-2-4- آندایز در v86………………………………………………………………………………………….. 95

6-1-2-5- حل کردن آلومینا……………………………………………………………………………………… 95

6-1-2-6- آندایز در 104 و v8/68………………………………………………………………………… 96

6-1-3- مراحل پس از آندایز…………………………………………………………………………………………… 96

6-1-3-1- نازک­سازی نمونه………………………………………………………………………………………………….. 99

6-1-3-2- گشاد کردن حفره­ها………………………………………………………………………………….. 99

6-1-3-3- حل کردن لایه­ی آلومینیوم…………………………………………………………………….. 100

6-1-3-4- باز کردن ته حفره­ها…………………………………………………………………………………. 100

6-2- انباشت در قالب……………………………………………………………………………………………………………… 100

6-2-1- الکتروانباشت به روش مستقیم………………………………………………………………………….. 100

6-2-1-1- آماده­سازی نمونه جهت انباشت مستقیم……………………………………………….. 100

6-2-1-2- روش کار……………………………………………………………………………………………………. 102

6-2-2- الکتروانباشت به روش تناوبی…………………………………………………………………………….. 102

6-2-2-1- آماده­سازی نمونه جهت انباشت تناوبی…………………………………………………… 103

6-2-2-2- روش کار……………………………………………………………………………………………………. 103

عنوان                                                                                                                      صفحه

 

6-2-2-2-1- الکتروانباشت نانوسیم­های Sn………………………………………………………. 104

6-2-2-2-2- الکتروانباشت نانوسیم­های Zn………………………………………………………. 106

6-2-2-2-3- الکتروانباشت نانوسیم­های نقره…………………………………………………….. 109

6-2-2-2-4- الکتروانباشت نانوسیم­های Ag/Zn ……………………………………………… 111

6-2-3- الکتروانباشت به روش پالسی……………………………………………………………………………… 113

6-2-3-1- آماده­سازی نمونه جهت انباشت پالسی…………………………………………………… 113

6-2-3-2- روش کار…………………………………………………………………………………………………… 113

6-2-3-2-1- الکتروانباشت پالسی نانوسیم­های Zn…………………………………………… 113

6-3- آماده­سازی نمونه­ها جهت تهیه­ی تصویر SEM ……………………………………………………. 116

6-4- آماده­سازی نمونه­ها جهت تهیه­ی تصویر XRD…………………………………………………….. 117

6-5- اکسید کردن نمونه­ها……………………………………………………………………………………………….. 118

6-6- مقاومت­سنجی نمونه­ها…………………………………………………………………………………………….. 120

6-6-1- مقاومت­سنجی بدون انحلال لایه­ی سدی…………………………………………………………. 120

6-6-2- مقاومت­سنجی با انحلال لایه­ی سدی از روی کار…………………………………………….. 120

6-6-3- مقاومت­سنجی با انحلال لایه­ی سدی از پشت کار…………………………………………… 121

6-7- تخمین مقدار مقاومت تقریبی تک نانوسیم Zn………………………………………………………….. 125

 

فصل هفتم: بحث و نتیجه گیری

بحث و نتیجه­گیری……………………………………………………………………………………………………………………. 128

 

فهرست منابع و مأخذ………………………………………………………………………………………………………………… 131

فهرست جدول ها

 

 

عنوان                                                                                                                      صفحه

 

جدول (2-1)  روش­های رایج تولید نانومواد……………………………………………………………………………….. 8

جدول (3-1)  نیمه­هادی­هایی که امروزه مورد استفاده قرار می­گیرند……………………………………… 23

جدول (3-2)  مقاومت ویژه­ی تقریبی مواد مختلف…………………………………………………………………….. 30

جدول (3-3)  انرژی جنبشی و چگالی حالات برای ابعاد مختلف مواد نیمه­هادی………………….. 30

جدول (6-1)  آندایزهای انجام گرفته با اهداف انباشتی و شرایط آن­ها…………………………………… 91

جدول (6-2)  شرایط ولتاژ و فرکانس­ در آزمایش­های انباشت –آندایز انجام شده

در آزمایشگاه برای انباشت قلع…………………………………………………………………………………………………….. 104

جدول (6-3)  خلاصه­ای از آزمایش­های انجام شده جهت تشکیل نانوسیم­های Zn و

شرایط آندایز و انباشت آن­ها………………………………………………………………………………………………………… 107

جدول (6-4)  مقاومت دوسر نمونه­های انباشتی با روکش طلا قبل و بعد از اکسایش…………… 123

 

فهرست شکل ها

 

 

عنوان                                                                                                                      صفحه

 

شکل (2-1)  اساس کار میکروسکوپ الکترونی عبوری……………………………………………………………… 11

شکل (2-2)  نمایی کلی از اجزای اصلی میکروسکوپ الکترونی روبشی………………………………….. 13

شکل (3-1)  چگالی حالات برحسب انرژی الکترون­ها برای سیستم سه بعدی………………………. 28

شکل (3-2)  نمایشی از ابعاد مواد نیمه­هادی و نمودارهای چگالی حالات آن­ها…………………….. 31

شکل (3-3)  تشریح تفاوت بین پراکندگی آینه­ای و پخشی سطح. ………………………………………… 35

سشکل (3-4)  توضیح منشاء پراکندگی مرز-دانه……………………………………………………………………… 36

شکل (3-5)  نمودار اندازه­گیری شده بصورت تجربی از وابستگی مقاومت ویژه

به عرض سیم ………………………………………………………………………………………………………………………………… 37

شکل (3-6)  نمودار محاسبه شده از وابستگی مقاومت ویژه به عرض سیم بر پایه­ی

پراکندگی سطح FS ……………………………………………………………………………………………………………………… 39

شکل (4-1)  (الف) ساختار آلومینای آندایز شده­ی متخلخل …………………………………………………… 46

شکل (4-2)  (الف) نمودار رشد اکسید متخلخل در رژیم جریان ثابت (ب) رژیم

پتانسیل ثابت (پ) مراحل جوانه­زنی و رشد حفره­ها در دو رژیم……………………………………………….. 48

شکل (4-3)  نمودار رویهم افتادن فرایندهای رخ داده در طول رشد اکسید متخلخل

تحت رژیم آندایز پتانسیل ثابت……………………………………………………………………………………………………. 49

شکل (4-4)  (الف) طرح پالس استفاده شده در آندایز پالسی با پتانسیل­های UMA

دنبال شده با UHA در مدت زمان­هایMA ז و HAז ………………………………………………………………………… 53

شکل (4-5)  نمودار الگووار توزیع جریان در شروع و گسترش رشد حفره­ها بر

آلومینای آندایزی……………………………………………………………………………………………………………………………. 55

شکل (4-6)  نمایی از حرکت یون­ها و انحلال اکسید در محلول سولفوریک اسید…………………. 57

شکل (4-7)  الف) نمونه­ی اولیه­ی AL قبل از الکترپالیش ……………………………………………………… 63

شکل (4-8)  نمایشی از الگودهی سطح آلومینیوم با استفاده از یک الگوی خارجی………………. 64

شکل (4-9)  تصویر SEM از (a) قالب AAO با الگوی دایره­ای ……………………………………………… 64

عنوان                                                                                                                      صفحه

 

شکل (4-10)  نمایش الگووار مراحل تشکیل ساختار ساندویچی

PAA/AL2O3/PAA …………………………………………………………………………………………………………………… 65

شکل (4-11)  نمایش طرح­واری از تولید مواد نانوساختار با استفاده از آلومینای

آندیک متخلخل ……………………………………………………………………………………………………………………………… 71

شکل (5-1)  منحنی جریان لحظه­ای فرایند الکتروانباشت و مراحل مکانیسم رشد

نانوسیم­ها. ………………………………………………………………………………………………………………………………………. 81

شکل (5-2)  مراحل تهیه­ی آرایه­ای از نانوسیم­ها از طریق الکتروانباشت مستقیم…………………. 82

شکل (5-3)  نمایش دو نوع پالس مربعی و سینوسی برای الکتروانباشت شیمیایی……………….. 84

شکل (5-4)  نمایی از مراحل تهیه­ی نانوسیم­های سولفیدی با استفاده

از قالب آلومینای آندیک متخلخل و روش انباشت الکتروشیمیایی متناوب………………………………. 86

شکل (6-1)  دستگاه پانج موجود در آزمایشگاه لایه­نشانی جهت برش ورقه­ی

آلومینیوم به شکل قرص­هایی با قطر cm2/1…………………………………………………………………………….. 89

شکل (6-2)  سمت راست قبل از سوار شدن فلنچ بر روی راکتور و سمت چپ

بعد از سوار شدن آن………………………………………………………………………………………………………………………. 90

شکل (6-3)  نمودار پالیش یک قطعه آلومینیوم در محلول پرکلریک اسید و اتانول

به نسبت حجمی یک به چهار……………………………………………………………………………………………………… 91

شکل (6-4) (الف) چینش سیستم آندایز شامل منبع تغذیه، کسی، نمایشگر رایانه،

سیستم خنک کننده، سیم­های رابط و غیره ……………………………………………………………………………… 92

شکل (6-5)  نمودار جریان، ولتاژ و بار برحسب زمان در آندایز با اسید اکسالیک M3/0

در v130……………………………………………………………………………………………………………………………………….. 94

شکل (6-6)  نمودار جریان، ولتاژ و بار برحسب زمان در آندایز با اکسالیک M4/0

و سولفوریک M02/0 در V130…………………………………………………………………………………………………. 94

شکل (6-7)  نمودار جریان، ولتاژ و بار در آندایز با مخلوط اسید اکسالیک M05/0

و فسفریک M02/0 با ولتاژ V104 که تا مقدار بار حدود Q3 ادامه یافته است. ………………….. 95

شکل (6-8)  الف) نمودار آندایز v130 و نازک­سازی متعاقب تا v12 (نازک­سازی از

حدود s1850 شروع شده است…………………………………………………………………………………………………… 97

شکل (6-9)  دستگاه قابل برنامه­ریزی ولتاژ و فرکانس ac/dc مدل EC1000S

موجود در آزمایشگاه لایه­نشانی……………………………………………………………………………………………………… 98

شکل (6-10)  الف) نمونه­ی آندایز شده که بر واشر چسبیده شده

(از طرف سطح آندایزی) و واشر نیز به شیشه چسبیده است. ………………………………………………….. 101

عنوان                                                                                                                      صفحه

 

شکل (6-11)  سیستم لایه­نشانی چند منظوره­ی موجود در آزمایشگاه لایه­نشانی

بخش فیزیک دانشگاه شیراز…………………………………………………………………………………………………………. 102

شکل (6-12)  تصویر میکروسکوپی SEM از نانوسیم­های Sn بیرون زده از

حفره­های قالب آلومینای آندیک متخلخل…………………………………………………………………………………….. 105

شکل (6-13)  تصویر XRD حاصل از قالب آلومینای متخلخل انباشته با نانوسیم­های

Sn با روش انباشت الکتروشیمیایی تناوبی………………………………………………………………………………….. 105

شکل (6-14)  الگوی پراش XRD حاصل از قالب آلومینای آندیک متخلخل انباشته

با Zn به روش انباشت الکتروشیمیایی تناوبی. ………………………………………………………………………….. 106

شکل (6-15)  سمت راست نمودار ولتاژ و جریان پالسی انباشت zn با پالس­های

نامتقارن پیوسته (v18-12) که موج آبی رنگ بار و شیب آن نماینده میزان نشست

می­باشد. ………………………………………………………………………………………………………………………………………… 108

شکل (6-16)  تصویر میکروسی SEM نانوسیم­های Zn بیرون زده از قالب

آلومینای آندیک متخلخل……………………………………………………………………………………………………………… 108

شکل (6-17)  نمودار جریان متوسط الکتروانباشت تناوبی در انباشت نقره درون قالب

آلومینای آندیک متخلخل………………………………………………………………………………………………………………. 109

شکل (6-18)  الف) تصویر سطحی قالب آلومینای آندیک، انباشتی با نانوسیم­های

Ag تهیه شده با میکروسکوپ SEM…………………………………………………………………………………………… 110

شکل (6-18)  ب) تصویر سطح مقطع قالب آلومینای آندیک نازک­سازی شده بهراه

نانوسیم­های Ag درون حفره­ای………………………………………………………………………………………………….. 110

شکل (6-19)  نمودار الکتروانباشت شیمیایی Ag-Zn درون قالب آلومینای آندیک

متخلخل. ……………………………………………………………………………………………………………………………………….. 111

شکل (6-20)  الگوی پراش XRD حاصل از قالب آلومینای آندیک متخلخل انباشته

با Zn و Ag به روش انباشت الکتروشیمیایی تناوبی………………………………………………………………….. 112

شکل (6-21)  تصویر میکروسکوپی SEM از نانوسیم­های Ag-Zn بیرون ریخته

از حفره­های قالب AAO………………………………………………………………………………………………………………. 112

شکل (6-22)  الف) پالس مربعی استفاده شده جهت الکتروانباشت به روش پالسی …………….. 114

شکل (6-23)  قالب آلومینای آندیک متخلخل پر شده با روی به …………………………………………… 114

شکل (6-24)  الف) نمودار پالس­های ولتاژ طراحی شده جهت انباشت………………………………….. 115

شکل (6-25)  الگوی پراش XRD حاصل از قالب آلومینای آندیک متخلخل انباشته

با Zn به روش انباشت الکتروشیمیایی پالسی. ………………………………………………………………………….. 115

عنوان                                                                                                                      صفحه

 

شکل (6-26)  تصاویر SEM حاصل از یک نمونه الکتروانباشت پالسی درون قالب

آلومینای آندیک متخلخل بعد از آماده­سازی نمونه جهت تصویر برداری………………………………….. 116

شکل (6-27)  یک نمونه­ی Sn بصورت کامل و یک نیم قطعه از قالب انباشت شده

که بر روی لامل چسبانده شده و AL آن­ها حل گردیده و آماده­ی تهیه­ی

الگوی XRD هستند………………………………………………………………………………………………………………………. 117

شکل (6-28)  تصویر XRD حاصل از قالب آلومینای آندیک متخلخل انباشته با

نانوسیم­های Zn بعد از اکسایش در دمای c3000 به مدت حدود 40 ساعت. ……………………… 119

شکل (6-29)  تصویر XRD حاصل از قالب آلومینای متخلخل انباشته با نانوسیم­های

Sn بعد از اکسایش در دمای c5500 به مدت حدود 40 ساعت……………………………………………… 119

شکل (6-30)  قالب آلومینای آندیک متخلخل انباشته با روی در حین انحلال در

محلول NaOH 25%………………………………………………………………………………………………………………………. 121

شکل (6-31)  قالب آلومینای آندیک متخلخل پر شده با روی به روش انباشت

الکتروشیمیایی پالسی…………………………………………………………………………………………………………………… 123

شکل (6-32)  نمونه­های تهیه شده جهت اندازه­گیری مقاومت، که روی آن­ها

توسط چسب نقره سیم­های نازک مسی چسبانده شده و سپس با چسب مایع

پوشش داده شده­اند………………………………………………………………………………………………………………………… 124

شکل (6-33)  طرحی از سطح لانه زنبوری آلومینای آندایز شده……………………………………………. 126

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 112
|
امتیاز مطلب : 3
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده علوم

پایان نامه کارشناسی ارشد در رشته فیزیک (اتمی و مولکولی)

برهمکنش پلاسمون-مولکول در نانوذره و نانومیله­ های فلزی

استاد راهنما

دکتر حمید نادگران

شهریور ماه 1391

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

نانوبلور­های فلزات نوبل به خوبی خصوصیات پلاسمون­های سطحی جایگزیده را نشان می­دهند. پلاسمون­های سطحی نوسان جمعی الکترون­ها در فلزات می­باشند. هدف از این پایان نامه، بررسی برهم کنش پلاسمون­های ناشی از نانوبلور­های کروی، مکعبی و میله­ای شکل با مولکول­های بدون جذب و مقایسه آن با نتایج تجربی می­باشد. از این خصوصیت می­توان برای ساخت حسگر­های ضریب شکست در ابعادنانو استفاده کرد. برانگیخته شدن پلاسمون­های سطحی جایگزیده، خود را به عنوان یک افزایش قابل توجه در طیف خاموشی نانوبلور، در طول موج تشدید پلاسمونی نشان می­دهد. بنابراین برای بررسی برهم کنش پلاسمون-مولکول، نیازمند بررسی عوامل موثر بر طول موج تشدید پلاسمونی، از طریق طیف خاموشی آن می­باشیم. این کار برای سه نوع نانوبلور معرفی شده انجام و نتایج با نتایج تجربی در دسترس مقایسه شده­اند. علاوه بر این، این کار برای نانوبلور­ها با لایه­ای بر روی آن، به منظور بررسی تاثیر یک لایه پلیمری یا پروتئینی بر سطح نانوبلور انجام شده است. نتایج به دست آمده نشان می­دهند که طول موج تشدید پلاسمونی به شکل، ساختار و ابعاد نانوبلور و همچنین ضریب شکست محیط اطراف وابسته می­باشد. برای نانوبلور پوشیده شده نیز ضخامت و ضریب شکست لایه بر روی آن عوامل موثر بر طول موج تشدید پلاسمونی می­باشند

فهرست مطالب

 

عنوان                                                                                                                      صفحه

 

فصلاول: 1

1-1- معرفیکلی: 2

1-1-1- انواعپلاسمونها: 4

1-2- تاریخچه: 6

1-3- کاربردهایپلاسمونیک… 9

فصلدوم: 12

2-1- خواصنوریفلزات.. 13

2-1-1 معادلاتماکسولوانتشارامواجالکترومغناطیسی: 13

2-1-2- مدلدرود-سامرفلد: 16

2-1-3- انتقالبیننواری: 18

2-2- پلاسمونهایانتشاری: 20

2-2-1-موجمحوشونده: 20

2-2-2- پلاریتون-پلاسمونسطحی.. 22

2-3- برانگیختگیپلاریتون-پلاسمونهایسطحی: 26

2-3-1- جفتشدگیبااستفادهازمنشور: 26

2-3-2- جفتشدگیبهوسیلهتوری: 28

2-3-3- برانگیختگیمیداننزدیک: 30

2-4- نانوپلاسمونیک… 31

2-5- حسگرزیستی: 32

2-5-1- ساختحسگرزیستیبااستفادهازپلاسمونسطحیجایگزیده 37

2-5-2- حسگرآنسامبلی.. 38

2-5-3- حسگرتکنانوبلور 38

فصلسوم: 41

3-1- انواعمولکول: 42

3-2- تشدیدپلاسمونیوابستهبهضریبشکست: 44

3-3- جفتشدگیتشدید: 45

3-3- افزایشسطحیپراکندگیرامان(SERS): 48

3-3-1- پراکندگیرامان: 48

3-3-2- افزایشسطحی: 50

3-4- افزایشپلاسمونیفلورسانس: 51

فصلچهارم: 55

4-1- تصحیحمدلدرودبرایابعادنانو. 56

4-2- پراکندگی،جذبوخاموشی.. 59

4-2-1- تقریبدوقطبی: 61

4-2-2- تئوریسطحمقطعنوریبرایپراکندگیامواجالکترومغناطیسی: 62

4-3- تقریبدوقطبیبرایسهشکلنانوبلور 65

4-3-1- پذیرفتاریالکتریکییکذره 65

4-3-2- خواصکلی.. 68

4-3-3- تانسورقطبشپذیری.. 71

4-3-4- محاسبهسطحمقطعخاموشیدرتقریبدوقطبی: 72

4-3-5- ثابتدیالکتریکمتوسط.. 73

4-3-6- تقریبدوقطبیبرایکره: 74

4-3-7- تقریبدوقطبیبراینانومیله: 75

4-3-8- تقریبدوقطبیبرایمکعب: 76

4-4- تئوریمی: 77

4-4-1-بسطموجتختدرهارمونیکهایکرویبرداری: 82

4-4-2- میدانهایداخلیوپراکندهشده: 85

4-4-3- توابعوابستهزاویهای: 87

4-4-4- ضرایبپراکندگی: 88

4-4-5- محاسبهسطحمقطع: 90

4-4-6- تئوریمیبرایکرهپوشیدهشده: 91

4-5- اصلهویگنس: 92

4-6- محاسبهسطحمقطعخاموشیبرایاستوانهمحدود. 98

4-6-1- امواجاستوانهای: 98

4-6-2- بسطموجتختدرهارمونیکهایاستوانهایبرداری: 100

4-6-3- پراکندگیازاستوانهمحدودبااستفادهازتقریباستوانهنامحدود. 102

4-6-5- محاسبهسطحمقطعخاموشی: 105

فصلپنجم: 113

5-1: تاثیرساختارنانوبلوربرطولموجتشدیدپلاسمونی.. 114

5-1-1- نانوکره: 115

5-1-2: نانومکعب.. 117

5-1-3- نانومیله. 118

5-2- تاثیرابعادنانوکریستالبرطولموجتشدیدپلاسمونی.. 120

5-2-1- نانوکره 120

5-2-2- نانومکعب: 123

5-2-3- نانومیله. 124

5-3- تاثیرضریبشکستبرطولموجتشدیدپلاسمونی: حساسیتضریبشکست.. 126

5-3-1- نانوکره 127

5-3-2- نانومکعب.. 129

5-3-3- نانومیله. 130

5-4- تاثیرلایهپوشانندهبرطولموجتشدیدپلاسمونی.. 133

5-4-1- تاثیرضخامتلایهپوشانندهبرطولموجتشدیدپلاسمونی.. 134

5-4-2- تاثیرضریبشکستلایهپوشانندهبرطیفخاموشی. 137

5-5- نتایجوپیشنهادات.. 139

5-5-1- نتایج. 139

5-5-2- پیشنهادات.. 141

فهرستمنابع. 142

پیوستI: 150

ABSTRACT. 155

 

 

فهرست جدول­ها

 

 

عنوان و شماره                                                                                                        صفحه

جدول 4- 1:مقادیرnوcبرایمکعب… 77

جدول 5- 1: پارامترهایمدلدرود-سامرفلدبرایفلزاتطلاونقره. 114

جدول 5- 2: مقادیرطولموجتشدیدپلاسمونیبرایدوروشمورداستفادهبرایکرهباقطر 15 نانومتر. 116

جدول 5- 3: مقادیرطولموجتشدیدپلاسمونیشکل 5-2.. 117

جدول 5- 4: مقادیرطولموجتشدیدپلاسمونیبرایشکل 5-3.. 118

جدول 5- 5: مقادیرطولموجتشدیدپلاسمونیبرایدوروشمورداستفادهبرایکرهباقطر 15 نانومتر. 119

جدول 5- 6: مقادیربهدستآمدهبرایشعاعبهینهدرشکلهای (5-7) و (5-8). 123

جدول 5- 7: مقادیرطولموجتشدیدپلاسمونیبراینانومیلهبانسبتطولبهعرضمتفاوتومقایسهبانتایجتجربی.. 126

جدول 5- 8: مقادیرمحاسبهشدهبرایحساسیتضریبشکستبراینانوکرهباقطر 15 نانومتر. 128

جدول 5- 9: مقادیرمحاسبهشدهبرایحساسیتضریبشکستبراینانومکعبباطول 44 نانومتر. 130

جدول 5- 10: مقادیرمحاسبهشدهبرایحساسیتضریبشکستبراینانومیله. 133

جدول 5- 11: مقادیرطولموجتشدیدپلاسمونیبرایکرهومیلهپوشاندهشده. 138

فهرست شکل­ها

 

 

عنوان                                                                                                                      صفحه

 

شکل1‑1: نمودارتعدادمقالاتحاویواژهپلاسمونسطحیدرهرسال.. 7

شکل 2- 1: نمودارقسمتحقیقی (بالا) وموهومی (پایین) تابعدیالکتریکفلزطلا.. 19

شکل 2- 2: سطحمشترکدومحیطباضریبشکستمتفاوت… 23

شکل 2- 3:نمودارمعادلهپاشندگیپلاریتون-پلاسمونسطحیبرایدیالکتریکهواوشیشه. 25

شکل 2- 4: نمودارپاشندگیپلاریتون-پلاسمونسطحیبراینشاندادنچگونگیبرانگیختگیآنهابااستفادهازمنشور. 27

شکل 2- 5: استفادهازمنشوربرایبرانگیختگیپلاریتون-پلاسمونسطحی. 28

شکل 2- 6: استفادهازتوریبرایبرانگیختگیپلاریتون-پلاسمونسطحی.. 29

شکل 2- 7: نمایششماتیکروشبرانگیختگیمیداننزدیک…. 30

شکل 2- 8: نمایششماتیکتولیدپلاسمونسطحیجایگزیده. 31

شکل 2- 9: راست: عملکردحسگربااستفادهازمدولاسیونطولموج. چپ: عملکردحسگربااستفادهازمدولاسیونزاویهای.. 34

شکل 2- 10: اصولساختحسگربرپایهپلاریتون-پلاسمونسطحی. 36

شکل 2- 11: تغییراتطولموجتشدیدپلاسمونینسبتبهضخامتلایهپروتئینی.. 37

شکل 2- 12: نتایجبهدستآمدهبرایحسگرتکنانوبلور. 39

شکل 3- 1: نمودارشماتیکضریبشکستسهنوعمولکولمعرفیشده. 43

شکل 3- 2:طیفخاموشیبرایششنانومیلهبانسبتطولبهعرضمتفاوتوتاثیرمولکولهاینوعدوم. 46

شکل 3- 3: نمودارجابجایپلاسمونیبرحسبفاصلهمولکولازسطحنانوبلور. 47

شکل 3- 4: a)شکلشماتیکپراکندگیرامان. b)تابشاستوکس. c)تابشآنتیاستوکس…. 49

شکل 3- 5:A) نانوآنتنطلایبوتیدرقالبپلاسمابهصورتشماتیک. B) افزایششدتمیدانالکتریکیاطرافنانوآنتن. C) افزایششدتفلورسانسبرحسباندازهگافبوتی   52

شکل 4- 1: شکلشماتیکبرخوردموجالکترومغناطیسیبههدفومیدانپراکندهشدهدرسطحکرهفرضیبهشعاعr. 63

شکل 4- 2:نمایششماتیکتعریفتابعدیالکتریکبرایذرهولایهرویآن.. 73

شکل 4- 3:شکلشماتیکنانومیله. 75

شکل 4- 4: نمودارمقادیرnوcبرایمکعب [84]. 77

جدول 4- 1:مقادیرnوcبرایمکعب… 77

شکل 4- 5: پراکندگیالکترومغناطیسیبوسیلهمنبعJدرداخلحجمفرضی.. 93

شکل 5- 1: منحنیطیفخاموشینانوکرهباقطر 15 نانومتر. 115

شکل 5- 2: منحنیطیفخاموشینانوکرهباترکیباتمتفاوتنقره. 116

شکل 5- 3: منحنیطیفخاموشینانومکعبباترکیباتمتفاوتنقره. 118

شکل 5- 4: طیفخاموشینانومیلهبانسبتطولبهعرض4/2 برایفلزاتطلاونقره. 119

شکل 5- 5: طیفخاموشینانوکرهباشعاع¬هایمتفاوتبرایفلزاتطلاونقرهبااستفادهازروشدوقطبی.. 121

شکل 5- 6: طیفخاموشینانوکرهباشعاع¬هایمتفاوتبرایفلزاتطلاونقرهبااستفادهازتئوریمی.. 121

شکل 5- 7: منحنیمقدارببیشینهطیفخاموشینسبتبهشعاعنانوکرهبااستفادهازتئوریمی.. 122

شکل 5- 8: منحنیمقداربیشینهطیفخاموشینسبتبهشعاعنانوکرهباترکیباتمتفاوتطلاونقره. 122

شکل 5- 9: طیفخاموشینانومکعبباابعادمتفاوتبرایفلزاتطلاونقره. 124

شکل 5- 10: طیفخاموشینانومیلهبانسبتهایطولبهعرضمتفاوتبااستفادهازتقریبدوقطبی.. 125

شکل 5- 11: طیفخاموشینانومیلهبانسبت¬هایطولبهعرضمتفاوتبااستفادهازاصلهویگنس…. 125

شکل 5- 12: طیفخاموشینانوکرهبرایدوضریبشکستمتفاوتبرایمحیط… 127

شکل 5- 13: منحنیجابجاییپلاسمونینسبتبهتغییراتضریبشکستمحیطاطرافبرایمحاسبه. 128

شکل 5- 14: طیفخاموشینانومکعببرایدوضریبشکستمتفاوتبرایمحیط… 129

شکل 5- 15: منحنیجابجاییپلاسمونینسبتبهتغییراتضریبشکستمحیطاطرافبرایمحاسبهحساسیتضریبشکستبراینانومکعب    130

شکل 5- 16: طیفخاموشینانومیلهبرایدوضریبشکستمتفاوتمحیطبااستفادهازتقریبدوقطبی.. 131

شکل 5- 17: طیفخاموشینانومیلهبرایدوضریبشکستمتفاوتمحیطبااستفادهازاصلهویگنس…. 131

شکل 5- 18: منحنیجابجاییپلاسمونینسبتبهتغییراتضریبشکستمحیطاطرافبرایمحاسبهحساسیتضریبشکستبراینانومیلهبااستفادهازتقریبدوقطبی   132

شکل 5- 19:منحنیجابجاییپلاسمونینسبتبهتغییراتضریبشکستمحیطاطرافبرایمحاسبهحساسیتضریبشکستبراینانومیلهبااستفادهازاصلهویگنس     132

شکل 5- 20: طیفخاموشینانوکرهپوشاندهشدهباضخامتهایمتفاوتازلایه. 134

شکل 5- 21: منحنیجابجاییپلاسمونیبرحسبتغییراتنسبتضخامتلایهبهشعاعنانوکرهباشعاع 40 نانومتر. 135

شکل 5- 22: منحنیجابجاییپلاسمونیبرحسبتغییراتنسبتضخامتلایهبهشعاعنانوکرهباشعاعهایمختلفنانوکره. 136

شکل 5- 23: طیفخاموشینانومکعبپوشاندهشدهباضخامت¬هایمتفاوتازلایه. 137

شکل 5- 24: طیفخاموشینانوکرهپوشاندهشدهباضریبشکست¬هایمتفاوت… 138

شکل 5- 25: طیفخاموشینانومیلهپوشاندهشدهباضریبشکست¬هایمتفاوت… 138

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

 



:: بازدید از این مطلب : 154
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده مهندسی

پایان نامه­ی کارشناسی ارشد در رشته

مهندسی هسته­ای ­- راکتور

امکان­سنجی کاربرد نانوسیالات به عنوان جاذب نوترون در خنک‌کننده اضطراری قلب رآکتور

استاد راهنما

دکتر محمدرضا نعمت الهی

بهمن 1392

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب

 

 

عنوان                                                                                                                     صفحه

 

فصل اول: مقدمه. 1

 

فصل دوم: پیشینه تحقیق

2-1- مقدمه. 5

2-2- کارهای انجام شده: 5

 

فصل سوم: تئوری

3-1- مقدمه. 13

3-2- کلیات.. 13

3-3- انتقال حرارت در نانو سیالات.. 15

3-2-1 مکانیسم‌های انتقال حرارت در نانو سیالات.. 17

3-3- بررسی نوترونیک… 24

3-3-1- جاذب‌های شیمیایی.. 26

3-4- بررسی خوردگی نانو سیالات.. 31

3-4-1- اهمیت خوردگی در صنعت… 33

3-5- بررسی اقتصادی.. 34

3-5-1- هزینه اولیه نانوسیال وتامین آن.. 35

3-5-2-هزینه های خوردگی وپمپاژناشی ازوجود نانوسیالات.. 36

عنوان                                                                                                                     صفحه

 

3-6- معرفی کدهای مورداستفاده. 37

3-6-1- کد هسته‌ای MCNPX.. 37

3-7- آشنایی با رآکتورهای هسته­ای.. 42

 

فصل چهارم: روش­کار و مدل­سازی

4-1-مقدمه. 49

4-2- مدل‌سازی برای مطالعه نوترونیک… 50

4-2-1-  معرفی کارت kcode: 51

4-3-روش مطالعه خوردگی.. 52

4-3-1- مقدمه. 52

4-3-2- شرایط مدل‌سازی.. 54

4-4-مطالعه اقتصادی.. 55

 

فصل پنجم: نتایج

5-1- مقدمه. 60

5-2- بررسی نوترونیک نانوسیالات.. 61

5-2-1- اسید بوریک: 61

5-2-2- خنک‌کننده حاوی نانو سیال مس در آب: 62

5-2-3-خنک‌کننده حاوی نانو سیال اکسید تیتانیوم در آب: 63

5-2-4-خنک‌کننده حاوی نانو سیال اکسید مس در آب: 64

5-2-5-خنک‌کننده حاوی نانو سیال اکسید آلومینیوم در آب: 65

5-2-6- خنک‌کننده حاوی نانو سیال اکسید هافنیوم در آب: 66

5-2-7- خنک‌کننده حاوی نانو سیال کادمیم در آب: 67

5-2-8- خنک‌کننده حاوی نانو سیال اکسید گادولینیوم در آب: 68

عنوان                                                                                                                     صفحه

 

5-2-9- تأثیر نانوسیال HfO بر ضریب تکثیر در وضعیت داغ رآکتور. 69

5-2-10- بحرانی کردم تنها با نانوسیال.. 71

5-3- نتایج بررسی خوردگی.. 72

5-3-1- نتایج مربوط به نانوسیال آلومینا (Al2O3) 72

5-3-2- نتایج مربوط به نانوسیال مس (Cu) 76

5-3-3-نتایج مربوط به نانوسیال تیتانیم دی‌اکسید (TiO2) 79

4-3-4- نتایج مربوط به نانوسیال اکسید هافنیوم (HfO) 81

5-3-5- مقایسه خوردگی ناشی از نانوسیالات متفاوت در یک ضریب تکثیر مشابه: 83

5-4- نتایج بررسی اقتصادی نانوسیالات.. 85

 

فصل ششم: بحث در نتایج.. 89

6-1-مقدمه. 90

6-2- نتیجه‌گیری بررسی نوترونیک… 91

6-3- نتیجه‌گیری بررسی خوردگی.. 92

6-4- نتیجه‌گیری بررسی اقتصادی.. 93

6-4-1- هزینه اولیه. 93

6-4-2- هزینه خوردگی.. 94

6-5- نتیجه‌گیری نهایی.. 94

6-6- پیشنهادات.. 95

 

فهرست مراجع.. 96

 

 

 

 

فهرست جداول

 

 

عنوان                                                                                                                     صفحه

 

جدول 3-1 : انواع تالیهای موجود در کد MCNPX.. 42

جدول 3-2: مشخصات فنی راکتور بوشهر. 45

جدول 4-1: هزینه اولیه نانوسیالات در مقایسه با بوریک اسید. 58

جدول 5-1: نتایج تأثیر درصدهای حجمی مختلف نانوسیال مس بروی ضریب تکثیر. 62

جدول 5-2: نتایج تأثیر درصدهای حجمی مختلف نانوسیال اکسید تیتانیوم
بروی ضریب تکثیر. 63

جدول 5-3: نتایج تأثیر درصدهای حجمی مختلف نانوسیال اکسید مس بروی
ضریب تکثیر. 64

جدول 5-4: نتایج تأثیر درصدهای حجمی مختلف نانوسیال اکسید آلومینیوم بروی ضریب تکثیر  65

جدول 5-5: نتایج تأثیر درصدهای حجمی مختلف نانوسیال اکسید هافنیوم
بروی ضریب تکثیر. 66

جدول 5-6: نتایج تأثیر درصدهای حجمی مختلف نانوسیال کادمیوم بروی ضریب تکثیر. 67

جدول 5-7: نتایج تأثیر درصدهای حجمی مختلف نانوسیال اکسید گادولینیوم  بروی ضریب تکثیر  68

جدول 5-8: مقدار خوردگی نسبت به سرعت سیال برای نانوسیال آلومینا 72

جدول 5-9: مقدار خوردگی نسبت به سرعت سیال برای نانوسیال مس…. 76

جدول 5-10: مقدار خوردگی نسبت به سرعت سیال برای نانوسیال تیتانیوم دی‌اکسید. 79

عنوان                                                                                                                     صفحه

 

جدول 5-11: مقدار خوردگی نسبت به سرعت سیال برای نانوسیال اکسید هافنیوم در زمان‌های مختلف    81

جدول 5-12: مقدار موردنیاز از هر نانوسیال برای داشتن ضریب تکثیر 0.9.. 83

جدول 5-13: قیمت یک تن از نانوسیالات در مقایسه با بوریک اسید. 86

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 122
|
امتیاز مطلب : 4
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده­ ی علوم

پایان­ نامه ­ی کارشناسی ارشد در رشته ­ی

فیزیک- ماده چگال

تولید نانو­ساختار­های ترکیبی اکسید روی و بررسی خواص نوری و کاربردهای آن

استادان راهنما

دکتر محمود مرادی

دکتر غلامحسین بردبار

اسفند ماه 1393

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

اکسید روی و نانو ساختارهای آن به دلیل خواص منحصر به فرد اپتیکی، گاف انرژی مناسب و در نتیجه کاربردهای متنوع از چند دهه‌ی گذشته موضوع تحقیق پژوهشگران بسیاری بوده‌ است. ناگفته نماند نانو‌‌ساختارهای اکسید روی کیفیت و کارایی بسیار بالایی نسبت به اکسید روی معمولی دارند. در این پژوهش از روش‌های الکتروانباشت و هیدروترمال استفاده و نانو ساختارهای ترکیبی اکسید روی را در دماهای مختلف تولید شده است. خواص ساختاری و مورفولوژی ساختارهای تولید شده با میکروسکوپ الکترونی روبشی و طیف پراش اشعه ایکس مشخصه یابی شده‌اند. نتایج حاصل نشان دادند که نانو ساختارهای تولید شده بدون هیچ‌گونه ناخالصی و با مورفولوژی‌های بسیار متنوع تولید شده‌اند که نشان‌دهنده‌ی زیاد شدن نسبت سطح به حجم می‌باشد. نکته قابل توجه در اینجا تولید نانوساختارهای ترکیبی اکسیدروی می‌باشد و نشان داده شده است که ساختار تولید شده بر روی سطح صاف به شدت متفاوت از نانوساختارهای تولید شده بر روی یک ساختار دیگر است. این نکته قابل توجه قرار گرفته و خصوصیات اپتیکی این نانوساختارها مورد بررسی قرار گرفته و سپس  به بررسی ساخت سلول خورشیدی پرداخته و استفاده از فناوری‌ نانو در ساخت سلول خورشیدی را مورد مطالعه قرار می‌دهیم.

 

 

کلید واژه: نانوساختار، اکسیدروی، الکتروانباشت، روش هیدروترمال، سلول خورشیدی

 

فهرست مطالب

 

عنوان                                                                                                   صفحه

 

فصل اول : مقدمه

1- 1-  مقدمه ای بر نانو فناوری.. 2

1-2-   فناوری نانو و همگرایی علمی.. 3

1-2-1-  نانو فناوری مرطوب… 3

1-2-2- نانو فناوری خشک…. 3

1-2-3- نانو فناوری تخمینی (محاسبه‌ای) 4

1- 3-  لزوم توجه به مقیاس نانوساختار 4

1- 4-  نانوساختارهای اکسیدروی.. 5

1- 5-  معرفی فصل‌های آینده 7

 

فصل دوم: طبقه بندی و روش‌های سنتر نانو مواد

 

2-1-  مقدمه. 9

2-2-  طبقه‌بندی نانو مواد از نظر ابعاد. 9

2-2-1- نانو مواد صفر بعدی.. 10

2-2-2- نانو مواد یک بعدی.. 10

2-2-3- نانو مواد دو بعدی.. 11

2-2-4- نانو مواد سه بعدی.. 11

2-3- روش‌های سنتر عناصر پایه. 12

2-3-1- روش بالا به پایین.. 13

2-3-1-1- تغییر شکل‌دهی پلاستیکی شدید  (SPD) 13

 

عنوان                                                                                                   صفحه

 

2-3-1-2- آسیاب‌های پرانرژی.. 14

2-3-1-3- لیتوگرافی.. 15

2-3-1-4- سونش…. 16

2-3-2- روش پایین به بالا. 16

2-3-2-1- روش‌های فیزیکی تبخیری.. 19

2-3-2-1-1-  روش تبخیر گرمایی.. 20

2-3-2-1- 2- روش تبخیر توسط باریکه‌ی الکترونی.. 21

2-3-2-1- 3- روش برآرایی توسط باریکه مولکولی (MBE) 23

2-3-2-1- 4 – روش لیزری پالسی (PLD) 24

2-3-2-1-5 – روش تبخیر به کمک شعاع یونی (IBAD) 25

2-3-2-2 – روش کندوپاش…. 26

2-3-2-2 – 1- روش کندوپاش با جریان مستقیم (DC) 27

2-3-2-2 -2- روش کندوپاش با امواج رادیویی (RF) 28

2-3-2-2 -3- روش کندوپاش با شتابدهنده مغناطیسی.. 29

2-3-2-3- روش چرخشی ( اسپینی ) 30

2-3-2-4-  سل –  ژل.. 30

2-3-2-5- هیدروترمال.. 32

2-3-2-6- آندایزکردن.. 32

2-3-2-7- روش صفحه گذاری.. 33

2-3-2-7- 1- روش صفحه گذاری با الکتریسیته ( الکترولیز ) 33

2-3-2-7- 2- صفحه گذاری بدون الکتریسیته. 34

2-3-2-8-  روش‌های شیمیایی تبخیری.. 35

 

 

 

عنوان                                                                                                   صفحه

 

 

فصل سوم: خواص و ویژگی­های نیمه‌رساناها

 

3-1 –  مقدمه. 38

3-2 –  خواص اساسی نیمه‌رساناها 39

3-2-1- ساختار نواری.. 39

3-2-2- گاف نواری مستقیم و غیرمستقیم در نیمه‌رساناها 40

3-2-3- انتقال حامل در نیمه‌رسانا 41

3-3 –  اکسید روی.. 44

3-3-1- ساختار بلوری اکسید روی.. 46

3-3-2- خواص مهم اکسید روی.. 50

3-4-  روش‌های ساخت نانوساختارهای اکسید روی.. 51

3-4-1- ساخت نانوسیم‌‌های اکسید روی.. 52

3-4-1- 1-  رشد فاز بخار 52

3-4-1- 2-  رشد فاز مایع.. 53

الف – روش هیدروترمال.. 53

الف – 1- تأثیر روش ‌بذر گذاری بر روش هیدروترمال.. 55

الف – 2-  تأثیر مدت زمان رشد بر روش هیدروترمال.. 57

الف – 3- تأثیر PH  محلول اولیه بر روش هیدروترمال.. 58

الف – 4- تأثیر جنس زیرلایه بر روش هیدروترمال.. 59

الف – 5- تأثیر دمای رشد بر روش هیدروترمال.. 59

الف – 6- تأثیر مواد افزودنی بر روش هیدروترمال.. 60

الف – 7- تأثیر HTMA  در شکل‌گیری نانوسیم‌ها در روش هیدروترمال.. 60

الف -8- تأثیر عوامل دیگر بر روش هیدروترمال.. 61

ب –  سایر روش‌های سنتز فاز محلول.. 61

3-4-2- ساخت نانوحفره‌‌‌های اکسید‌روی.. 62

عنوان                                                                                                   صفحه

 

 

3-4-2- 1-  ساخت به روش سلول الکتروشیمیایی 52

 

فصل چهارم: کاربردهای اکسیدروی

 

4-1 –  مقدمه. 69

4-2 –  حسگرها 70

4-2-1-حسگرگازی.. 70

4-2-2- زیست‌حسگرها 71

4-3 – خاصیت فوتو‌کاتالیستی.. 71

4-4 –  سلول‌های خورشیدی رنگدانه‌ای.. 72

4-4-1- اجزای تشکیل دهنده‌ی سلول خورشیدی حساس شده به رنگدانه. 73

4-4-1-1-  زیرلایه. 73

4-4-1-2-  فوتو آند. 74

4-4-1-3-  الکترولیت… 74

4-4-1-4- الکترود شمارشگر (کاتد) 75

4-4-1-5-  جاذب نور 75

4-4-2- اصول عملکرد سلول خورشیدی رنگدانه‌ای.. 76

 

 

 

فصل پنجم: تولید نانو ساختارهای ترکیبی اکسید روی

 

5-1 –  مقدمه. 78

5-2- تمیزکاری.. 77

5-3- تولید نانو ساختارهای ترکیبی اکسید روی.. 79

 

عنوان                                                                                                   صفحه

 

5-3-1- رشد نانوسیم اکسیدروی بر روی نانوحفره اکسیدروی.. 80

5-3-1-1- تولید نانوحفره 80

5-3-1-2- تولید نانوسیم.. 81

5-3-1-2- 1- تولید پوشش دانه‌ای.. 82

5-3-1-2- 2- رشد آرایه‌های نانو‌سیمی به روش هیدروترمال.. 82

5-3-1-3- بررسی اثر ولتاژ بر روی شکل‌گیری نانوساختارها 85

5-3-2- رشد نانوحفره‌ها بر روی لایه نازک از نانوسیم اکسیدروی.. 87

5-4- ساختار بلوری.. …………89

5-5- بررسی خواص نوری.. 90

5-6 –  ساخت سلول خورشیدی حساس شده به رنگدانه. 93

5-6-1- آماده‌ سازی الکترود کار در سلول خورشیدی رنگدانه‌ای.. 39

5-6-2- آماده‌ سازی الکترود مقابل در سلول خورشیدی رنگدانه‌ای.. 93

5-6-3- آماده‌ سازی الکترولیت در سلول خورشیدی رنگدانه‌ای.. 93

5-6-4- بستن سلول خورشیدی رنگدانه‌ای.. 94

5-6-5- مشخصه‌یابی سلول‌ خورشیدی رنگدانه‌ای.. 94

 

 

فصل ششم: نتیجه گیری و پیشنهادات………………………………………………………………..96

 

مراجع………………………………………………………………………………………………………………………………………..100

 

 

چکیده و صفحه عنوان به انگلیسی

 

 

فهرست جدول­ها

 

 

عنوان                                                                                                                      صفحه

 

جدول (3-1) خواص مهم اکسید روی .. 50

جدول (3-2) قطر و طول نانومیله‌های اکسیدروی متناسب با ضخامت لایه بذرگذاری شده. 56

جدول (3-3) میانگین قطر نانوسیم‌ها در زمان‌های مختلف .. 58

عنوان                                                                                                                          صفحه   

 

شکل (2-1) مقایسه روش بالا به پایین و روش پایین به بالاتولید نانو ذرات……………………………………..12

شکل (2-2)  نمودار درختی روشها­ی فیزیکی لایه­نشانی …………………………………………………………………..18

شکل (2-3) نمودار درختی روشها­ی شیمیایی لایه­نشانی…………………………………………………………………..19

شکل (2-4) طرحواره‌ای از روش لایه‌نشانی تبخیری ………………………………………………………………………..21

شکل (2-5) طرحواره‌ای از دستگاه لایه نشانی تبخیری به کمک باریکه الکترونی……………………………22

شکل (2-6)  طرحواره‌ای از لایه­گذاری منظم پرتوی مولکولی……………………………………………………………23

شکل (2-7) طرحواره‌ای از از دستگاه لایه نشانی لیزری پالسی ………………………………………………………..24

شکل (2-8) طرحواره‌ای از از لایه‌نشانی به روش کند­و­پاش ………………………………………………………………26

شکل (2-9) طرحواره‌ای از دستگاه لایه‌نشانی کندوپاش       RF………………………………………………… 28

شکل (2-10)  طرحواره‌ای از روش لایه‌نشانی سل – ژل …………………………………………………………………36

شکل (3-1) نحوه قرارگیری ترازها، نوارها و گاف انرژی…………………………………………………………………….40

شکل (3-2) ساختار بلوری اکسید روی……………………………………………………………………………………………….46

شکل (3-3) ساختار ورتسایت اکسید روی …………………………………………………………………………………………48

شکل (3-4) ساختارهای مختلف اکسید روی ……………………………………………………………………………………51

شکل (3-5) طرح واره ای از بذر گذاری استات روی بر روی بستر شیشه با لایه نشانی                                       چرخشی …………………………………………………………………………………………………………………………57

شکل (3-6) تصویری از یک سلول الکتروشیمیایی را برای رسوب دادن یک فلز، روی یک

الکترود جامد ……………………………………………………………………………………………………………………62

عنوان                                                                                                                          صفحه   

 

شکل (3-7) طرحواره‌ای از یک دستگاه پتانسیواستات با سل الکتروشیمیایی که با دو امپدانس       جایگزین شده است ……………………………………………………………………………………………………….67

شکل (3-8) سلول الکتروشیمیایی سه الکترودی با منبع تغذیه………………………………………………………..67

شکل (4-1) طرحواره و نحوه عملکرد سلول‌های خورشیدی رنگدانه‌ای…………………………………………….76

شکل (5-1) شستشوی زیرلایه با استفاده از التراسونیک …………………………………………………………………..79

شکل (5-2) تصویر SEM   از رشد نانو ساختارهای اکسید روی …………………………………………………….81

شکل (5-3) طرحواره‌ی راکتور طراحی شده جهت روش هیدروترمال………………………………………………83

شکل (5-4) سامانه استفاده شده برای رشد آرایه‌های نانوسیمی، به روش هیدروترمال……………………83

شکل (5-5) تصویر SEM از رشد نانو ساختارهای اکسید روی در مرحله ی هیدروترمال………………83

شکل (5-6) تصویر SEM   از رشد نانو ساختارهای اکسید روی در مرحله ی هیدروترمال بر روی       زیرلایه صاف  و خام FTO……………………………………………………………………………………………84

شکل (5-7) نانوپروس‌های تولید شده توسط الکتروانباشت  الف) در ولتاژ 0.5 ولت، ب) در   ولتاژ 1.0   ولت، ج) در ولتاژ 1.5ولت و د) در ولتاژ  2.0ولت  ……………………………………………………….85

شکل (5-8) نانومیله‌ها و نانوکلوخه‌های شکل گرفته بر روی زیرلایه‌های تولید شده به روش الکتروانباشت در  الف) ولتاژ 5/0 ولت، ب)  ولتاژ 1.0 ولت ج)  ولتاژ  5/1 ولت  و د) ولتاژ 2.0 ولت………………………………………………………………………………………………………………….86

شکل (5-9) تصویرSEM  از رشد نانو ساختارهای اکسید روی که بصورت نانومیله هستند در

مرحله‌ی هیدروترمال………………………………………………………………………………………………………….87

شکل (5-10) تصویر SEM   از رشد نانو ساختارهای اکسید روی در مرحله ی الکتروانباشت

الف) در ولتاژ 0.5 ولت، ب)  در ولتاژ 1.0 ولت  ج)  در ولتاژ  1.5 ولت

و د) در ولتاژ 2.0 ولت ………………………………………………………………………………………………..88

 

 

عنوان                                                                                                                          صفحه   

 

شکل (5-11) الگوی پراش پرتو ایکس از نانو دیسک‌ها ی اکسید روی تولید شده به روش

الکترو انباشت…………………………………………………………………………………………………….88

شکل (5-12) منحنی جذب نانو سیم‌های اکسید روی، تک مرحله‌ای……………………………………………….90

شکل (5-13) منحنی جذب نانو پروس‌های اکسید روی، تک مرحله‌ای …………………………………………..91

شکل (5-14) منحنی جذب نانوساختار ترکیبی ZnO …………………………………………………………………….92

شکل (5-15) منحنی جریان – ولتاژ سلول خورشیدی حساس شده به رنگ با لایه اکسید‌روی……

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 111
|
امتیاز مطلب : 5
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()