نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده علوم

پایان­ نامه کارشناسی ارشد در رشته فیزیک

گرایش نظری و اختر فیزیک

عنوان:

ترمودینامیک سیاه‌چاله‌های لاولاک در حضورمیدان­های الکترومغناطیسی غیرخطی

اساتید راهنما:

دکتر محمدحسین دهقانی

دکتر سیدحسین هندی

 

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل اول. 1

مقدمه. 1

1-1  قراردادِ یکایی.. 1

1-2  معرفی مفاهیم ارجاعی: ذرات نقطه‌ای، ریسمان‌ها و لایه‌ها 3

1-3  انگیزه، هدف و ساختار تحقیق.. 10

فصل دوم. 17

گرانش در ابعاد بالا. 17

2-1  بُعد چهارم و نظریه نسبیت عام اینشتین.. 17

2-2  نظریه میدان‌های کلاسیکی: فرمول‌بندی لاگرانژی میدان‌های گرانشی.. 25

2-3  کُنشِ مرزی نظریه نسبیت عام. 27

2-4  ایزومتری و میدان‌های برداری کیلینگ.. 28

2-5  جواب‌های نظریه نسبیت عام. 29

2-5-1  فضازمانِ آنتی دوسیته در  بُعد. 30

2-5-2  حل استاتیک باردار  بُعدی معادلات میدان اینشتین در حضور ثابت کیهان‌شناسی   31

2-6  گرانش لاولاک: گسترش استاندارد نسبیت عام به ابعاد بالا. 32

2-7  کُنش مرزی در گرانش لاولاک مرتبه سوم. 36

2-8  روش کانترترم و رفع واگرایی در محاسبه کمیت‌های پایا 37

فصل سوم. 42

نظریه­ی الکترودینامیک غیرخطی.. 42

3-1    الکترودینامیک ماکسول. 43

3-1-1  جرم الکترومغناطیسی و مسئله­ی واگرائی خودانرژی بارهای نقطه­ای.. 45

3-1-2  اصل برهم­نهی خطی در نظریه ماکسول. 47

3-2  نظریه الکترودینامیک غیرخطی.. 48

3-2-1  معادلات میدان در نظریه الکترودینامیک غیرخطی.. 51

3-2-2  محاسبه‌ی شدت میدان مطلق … 55

3-2-3  معادلاتِ موج در نظریه­های الکترودینامیک غیرخطی.. 56

3-3  جمع­بندی.. 58

فصل چهارم. 60

ترمودینامیک سیاه‌چاله‌ها در گرانش لاولاک… 60

4-1  ترمودینامیک سیستم­ها در طبیعت.. 61

4-2 ترمودینامیک سیاهچاله­ها 64

4-3 ترمودینامیک سیاهچاله­ها در گرانش خمش مراتب بالا. 68

4-4  کمیت­های ترمودینامیکی.. 70

4-4-1 بار الکتریکی.. 70

4-4-2 پتانسیل الکتریکی.. 71

4-4-2 سرعت زاویه‌ای.. 71

فصل پنجم. 73

ترمودینامیک جواب­های گرانش لاولاک مرتبه سوم در حضور کلاس­های نمائی و لگاریتمی نظریه الکترودینامیک غیرخطی.. 73

5-1  کُنش و معادلات میدان گرانش لاولاک مرتبه سوم در حضور میدان­های الکترومغناطیسی غیرخطی   74

5-2 جوابهای سیاهچاله­های باردار استاتیک در گرانش لاولاک مرتبه سوم در حضور شکل­های نمائی و لگاریتمی الکترودینامیک غیرخطی.. 75

5-2-1  جواب­های باردار استاتیک 1+6 بُعدی.. 79

5-2-2  معرفی جرمِ هندسی در گرانش لاولاک مرتبه سوم. 82

5-2-3  خصوصیات فضازمانِ جواب­های باردار استاتیک 1+6 بُعدی.. 83

5-2-4  جواب­های سیاهچاله­های باردار استاتیک  بُعدی.. 91

5-3  بررسی ترمودینامیک سیاهچاله­های لاولاک مرتبه سوم در حضور میدان­های الکترومغناطیسی غیرخطی   94

5-4  طبیعتِ پایداری سیاه‌چاله‌ها در آنسامبل‌های کانونی و کانونی بزرگ.. 99

5-4-1  بررسی پایداری ترمودینامیکی سیاهچاله­های باردار مجانباً تخت در آنسامبل کانونی.. 100

5-4-2  بررسی پایداری ترمودینامیکی سیاهچاله­های باردار مجانباً تخت در آنسامبل کانونی بزرگ    105

5-5  لایه­های سیاهِ چرخانِ باردار مجانباً  در گرانش لاولاک مرتبه سوم در حضور شکل­های نمائی و لگاریتمی الکترودینامیک غیرخطی.. 110

5-6  بررسی ترمودینامیک لایه­های سیاه چرخانِ باردار مجانباً  گرانشِ لاولاک مرتبه سوم در حضور میدان­های الکترومغناطیسی غیرخطی.. 114

5-7  طبیعتِ پایداری لایه­های سیاه در آنسامبل‌های کانونی و کانونی بزرگ.. 120

5-7-1  بررسی پایداری ترمودینامیکی لایه­های سیاه چرخانِ باردار مجانباً  در آنسامبل کانونی   120

5-7-2  بررسی پایداری ترمودینامیکی لایه­های سیاه چرخانِ باردار مجانباً  در آنسامبل کانونی بزرگ    123

فصل ششم. 127

نتیجه­گیری و پیشنهادات.. 127

پیوست الف.. 132

پیوست ب.. 134

پیوست ج. 135

مراجع. 137

فهرست شکل­ها

شکل 1-1: نظریه  به عنوان نظریه مادر برای پنج نظریه اَبرریسمان 10 بُعدی و نظریه اَبرگرانش 11 بُعدی ……………. 8

شکل 2-1: شکل سمت چپ تقسیم فضای فیزیکی به صفحاتِ زمان ثابت در چارچوبِ 4 مختصه­ای فضا و زمان در نظریه نیوتن. یک نقطه­ در این چارچوب یک رویداد نامیده می­شود و مسیر یک ذره در فضا و زمان توسط پیوستاری یک بُعدی از رویدادها، تحت عنوان جهان­خط، مشخص می­شود. شکل سمت راست لایه‌بندی فضازمان در نظریه نسبیت خاص را نشان می­دهد …………………………………………………………. ………………………………………………………………………19

شکل 2-2: دستگاه مختصات یک نگاشت از خمینه به فضای اقلیدسی است …………………………………………………………22

شکل 2-3: یک تبدیل مختصات بین دو مجموعه مختصات ………………………………………………………………………..23

شکل 3-1: تغییرات  بر حسب . شکل سمت چپ به ازای مقادیر  و .  شکل میانی به ازای مقادیر  و ؛ دیده می­شود که با افزایش  سه مدل در فاصله­ی مکانی خیلی کوچک برهم منطبق می­شوند. شکل سمت راست رفتار در نزدیکی مبدأ به ازای مقادیر  و  را نشان می­دهد ………………………………55

شکل 5-1: مقایسه رفتار تابع­های متریک  (لگاریتمی، نمائی و ماکسولی) برای فضازمان­های مجانباً تخت . به ازای مقادیر ………………….86

شکل 5-2: مقایسه رفتار تابع­های متریک  (لگاریتمی، نمائی و ماکسولی) برای فضازمان­های مجانباً . به ازای مقادیر  …………………86

شکل 5-3: تغییرات تابع متریک  نسبت به  برای کلاس­های  (شکل مشکی رنگ) و  (شکل آبی رنگ) برای حالت­های متفاوت پارامترِ جرم. به ازای مجموعه مقادیر ……………………………………………………………………………………………….88

شکل 5-4: تغییرات تابع متریک  نسبت به  برای کلاس­های (شکل مشکی رنگ)  و  (شکل آبی رنگ) به ازای مقادیر ، ،  و . در شکل خطوط باریک مربوط به حالت  (سیاه­چاله­ با یک اُفق)، خطوط پررنگ مربوط به حالت  (سیاه­چاله با دو اُفق)، خطوط نقطه­ای مربوط به حالت  (سیاه­چاله با اُفق اکستریم) و خطوط خط-نقطه­ای مربوط به حالت  (تکینگی عریان) هستند………………………………………………………………………..90

شکل 5-5: برای کلاس – تغییرات دما بر حسب   (شکل سمت چپ) و تغییرات دما بر حسب  (شکل سمت راست). به ازای مقادیر ………………102

شکل 5-6: برای کلاس – تغییرات ظرفیت گرمایی  بر حسب . شکل سمت چپ تغییرات در دامنه­های کوچک   را نشان می­دهد. شکل سمت راست تغییرات در مقادیر بزرگ­تر  را نشان می­دهد. به ازای مقادیر …………………………………………….103

شکل 5-7: برای کلاس – تغییرات دما بر حسب   (شکل سمت چپ) و تغییرات دما بر حسب  (شکل سمت راست). به ازای مقادیر ……………..104

شکل 5-8: برای کلاس – تغییرات ظرفیت گرمایی  بر حسب . به ازای مقادیر ……………………………………….104

شکل 5-9: برای کلاس – از چپ به راست به ترتیب تغییرات جرم، دما، ظرفیت گرمایی و دترمینان ماتریس هسیان (در آنسامبل کانونی بزرگ) بر حسب . به ازای مقادیر …………………………………………………………………………………………………………………………………………………………………………………107

شکل 5-10: برای کلاس – از چپ به راست به ترتیب تغییرات جرم، دما، ظرفیت گرمایی و دترمینان ماتریس هسیان (در آنسامبل کانونی بزرگ) بر حسب . به ازای مقادیر  …………………………………………………………………………………………………………………………….108

شکل 5-11: برای کلاس – از چپ به راست به ترتیب تغییرات جرم، دما و ظرفیت گرمایی بر حسب . به ازای مقادیر  ………………………………….122

شکل 5-12: : برای کلاس – از چپ به راست به ترتیب تغییرات جرم، دما و ظرفیت گرمایی بر حسب . به ازای مقادیر ………………………….122

شکل 5-13: تغییرات دترمینان ماتریس هسیان در آنسامبل کانونی بزرگ . شکل سمت چپ مربوط به کلاس  و شکل سمت راست برای کلاس . به ازای مقادیر …………………………………………………………………………………………………………………………………………………………………………………1

چکیده

در گرانش لاولاک تلاش­هایی برای فهمیدن نقش جملات خمش مراتب بالا از دیدگاه­های مختلف، به ویژه در زمینه­ی فیزیک سیاه­چاله­ها، شده است. در این پایان­نامه با در نظر گرفتن گرانش لاولاک مرتبه سوم در حضور کلاس­های نمائی و لگاریتمی الکترودینامیک غیرخطی، دو نوع جدید از جواب­های سیاه­چاله­ای توپولوژیکی در ابعاد 1+6 بُعد و بالاتر را که شاملِ سیاه­چاله­های باردارِ استاتیک مجانباً تخت، و لایه­های سیاه باردارِ چرخانِ مجانباً آنتی دوسیته می­باشد معرفی می­کنیم. تأثیرات میدان­های الکترومغناطیسی غیرخطی را بر جواب­ها بررسی می­کنیم و خواهیم دید که به ازای مقادیر مناسب برای پارامترهای متریک، این جواب­ها می­توانند به عنوان سیاه­چاله­ (لایه سیاه)هایی با دو اُفق رویداد، یک اُفق اکستریم و یا یک تکینگی عُریان تفسیر شوند. کمیت­های پایای ترمودینامیکی از قبیل دما، آنتروپی، جرم، بار الکتریکی و … را برای جواب­ها محاسبه کرده و نشان می­دهیم که قانون اول ترمودینامیک برای سیاه­چاله­های باردارِ استاتیک مجانباً تخت و لایه­های سیاه باردارِ چرخانِ مجانباً آنتی دوسیته برقرار است. در ادامه تحلیل پایداری ترمودینامیکی را برای سیاه­چاله­های باردارِ استاتیک مجانباً تخت با محاسبه دترمینان ماتریس هسیان در دو آنسامبل کانونی و کانونی بزرگ انجام داده و نشان می­دهیم که پایداری سیاه­چاله­ها در گرانش لاولاک مرتبه سوم می­تواند به نوع آنسامبل انتخابی بستگی داشته باشد، بدین معنی که جملات خمش مراتب بالا روی پایداری سیاه­چاله­ها تأثیر می­گذارد. در این بین نتایجی به دست می­آید که نشان می­دهد حضور میدان­های الکترومغناطیسی غیرخطی تأثیر یکسانی در رفتار آنسامبل­های متفاوت دارد. در پایان تحلیل پایداری ترمودینامیکی را برای لایه­های سیاه باردارِ چرخانِ مجانباً آنتی دوسیته انجام داده و نشان می­دهیم که حضور جملات خمش مراتب بالا و میدان­های الکترومغناطیسی غیرخطی تأثیر یکسانی در پایداری لایه­های سیاه در آنسامبل­های کانونی و کانونی بزرگ دارد. هم­چنین نشان می­دهیم که لایه­های سیاه فیزیکی (با دمای مثبت) دارای رفتار ترمودینامیکی پایداری هستند.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 98
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشکده خواجه نصیرالدین طوسی 

دانشکده فیزیک

پایان‌نامه دوره کارشناسی ارشد فیزیک-حالت جامد

 ساخت و مشخصه یابی سلول های خورشیدی حساس شده با نقاط کوانتومی کادمیم سولفید با استفاده از کاتد گرافن

استاد راهنما:

دکتر محمود صمدپور

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

در این تحقیق به ساخت ومشخصهیابی سلولهای خورشیدی حساس شده با نقاط کوانتومی کادمیوم سولفید و کادمیوم سلنید با استفاده از کاتدهای مختلف از جمله مس سولفید و سرب سولفید و کاتدهای نانوکامپوزیتی با پوششهای پیدرپی از این دو ماده پرداخته میشود. در این پایان نامه به دنبال بهینه کردن مشخصات فوتوولتایی این سلولها بوده  با توجه به پایین بودن فاکتور کارکرد در این سلولها و بررسی عوامل بازترکیب با توجه به آنالیز امپدانس الکتروشیمیایی این سلولها ، با معرفی کاتدهای مؤثر به دنبال افزایش این مشخصه میباشیم. با بهرهگیری از ساختارهای پیدرپی و ترکیبی مس سولفید و سرب سولفید که به روش سیلار لایه نشانی شدند بازدهی این سلولها تا بیش از 3 برابر نسبت به سلولهایی که کاتد آنها مس سولفید یا سرب سولفید است افزایش یافته است یعنی 63/3 % در مقابل 4/0 % و 48/1 %. همچنین فاکتور کارکرد در کاتدهای نانوکامپوزیتی مس سولفید/سرب سولفید/…/مس سولفید/سرب سولفید 2 برابر شده است یعنی 49/0 در مقابل 26/0. به علاوه با بررسی خواص فوتوولتائیک سلولهای خورشیدی به تحلیل کارکرد کاتد گرافن در این سلولها میپردازیم. در این تحقیق از صفحات گرافنی به دلیل دارا بودن ساختار دو بعدی و سطح مؤثر بالا و همچنین رسانایی الکتریکی مناسب و ترکیب آن با مس سولفید/سرب سولفید به منظور افزایش خواص فوتوولتائیک و بازدهی سلولها استفاده شده است. در این جا گرافن به دلیل سطح مؤثر زیادی که فراهم میکند در کاتدهای ترکیبی به عنوان بستری مناسب برای لایهنشانی مس سولفید و سرب سولفید بر روی آن به کار گرفته شده است و بازدهی را از 54/2 % تا 21/3 % افزایش داده است.  

کلید واژه: سلول خورشیدی، نقاط کوانتومی، نانو کامپوزیت ، سیلار ، گرافن

فهرست مطالب

عنوان                          صفحه

فهرست جدول‌ها ‌د

فهرست شکل‌‌ها ‌ه

پیشگفتار.. 1

فصل 1- مقدمه و سلولهای خورشیدی حساس شده با رنگدانه. 3

1-1-     مقدمه.. ………………………..3

1-2-     سلول های خورشیدی رنگدانه ای و ساختار کلی آن ها 5

1-2-1-فتوآند……. 6

1-2-2-الکترولیت اکسایشی – کاهشی.. 7

1-2-3-الکترود کاتد. 8

1-2-4-مکانیسم انتقال بار در سلولهای حساس شده با رنگدانه. 8

1-2-5- فرآیند های تزریق، انتقال و بازترکیب در سلولهای رنگدانهای.. 9

1-3-     نتیجهگیری.. 10

فصل 2-   سلولهای خورشیدی حساس شده با نقاط کوانتومی و مروری بر پیشینه تحقیقات……….. 12

2-1-     مقدمه.. 12

2-2-      مفهوم نقاط کوانتومی.. 12

2-3-      عوامل کاهش بازده در سلولهی خورشیدی تک پیوند. 13

2-4-      رویکردهای متفاوت با بهره گرفتن از ویژگیهای نقاط کوانتومی در طراحیQDSSCs 13

2-4-1-تنظیم گاف انرژی در نقاط کوانتومی.. 14

2-4-2-اثر حاملهای داغ. 15

2-4-3-تولید چندین جفت الکترون-حفره (اکسایتون) 17

2-4-4-سلولهای خورشیدی با نوار میانی.. 18

2-5-     سلولهای خورشیدی بر پایهی نقاط کوانتومی (QDSSCs) 19

2-5-1-ساختار و اصول عملکرد سلول های خورشیدی بر پایهی نقاط کوانتومی.. 20

2-5-2-اجزای مختلف سلول خورشیدی بر پایه نقاط کوانتومی.. 21

2-5-2-1-الکترود آند…………………………. 21

2-5-2-2-نقاط کوانتومی به عنوان حساس کننده و جاذب نور 22

2-5-2-3-الکترولیت اکسایشی کاهشی پلی سولفید. 24

2-5-2-4-الکترود مقابل…………………….. 25

2-5-3-برهمکنشهای انتقال و عبور الکترون-حفره در سلول های خورشیدی بر پایه نقاط کوانتومی.. 26

2-6-      مقایسهی سلولهای خورشیدی حساس شده با رنگدانه و نقاط کوانتومی.. 28

2-6-1-تفاوتهای ساختاری  و زمان انتقال بار در DSSCs و SSSCs. 29

2-7-      مروری بر نقاط کوانتومی به کار برده شده در QDSSCs به عنوان حساس کننده 34

2-8-     مروری بر کاتدهای به کار برده شده در QDSSCs 37

2-9-     نتیجهگیری.. 38

فصل 3-  ساخت و  روش های مشخصه یابی سلول های حساس شده با نقاط کوانتومی.. 41

3-1-     مقدمه.. 41

3-2-     مواد و تجهیزات مورد نیاز 41

3-2-1-مواد اولیه  41

3-2-2-تجهیزات مورد استفاده در فرایند ساخت… 42

3-3-     ساختارکلی سلول های حساس شده با نقاط کوانتومی.. 43

3-3-1-آماده سازی فوتوآند. 44

3-3-1-1- شستشوی زیرلایه…….. 44

3-3-1-2-لایه نشانی خمیر نانوذرهای TiO2  به روش دکتر بلید. 45

3-3-1-3-پخت حرارتی در کوره……….. 47

3-3-1-4-حساسسازی فوتوآند با نقاط کوانتومی کادمیوم سولفید به روش سیلار (SILAR) 47

3-3-1-5-ساخت نقاط کوانتومی CdSe  و حساسسازی آند به روش حمام شیمیایی(CBD) 49

3-3-2-آمادهسازی الکترود کاتد. 52

3-3-2-1-ساخت کاتد نوع اول از جنسCuS. 53

3-3-2-2-ساخت کاتد نوع دوم از جنس PbS. 53

3-3-2-3-ساخت کاتد نوع سوم از جنس مس سولفید/ سرب سولفید و سرب سولفید/مس سولفید. 54

3-3-2-4-ساخت کاتد با لایه نشانی پی در پی CuS/PbS…  به روش سیلار 54

3-3-3-ساخت الکترولیت پلی سولفید برای سلول های خورشیدی حساس شده با نقاط کوانتومی.. 55

3-3-4- بستن سلول های QDSSCs. 55

3-4-     روش های مشخصه یابی فوتوولتایی سلول های خورشیدی نقطه کوانتومی.. 57

3-4-1-اندازه گیری منحنی های ولتاژ – جریان.. 57

3-4-1-1-اندازه گیری منحنی های ولتاژ-جریان در روشنایی.. 57

3-4-1-2-اندازه گیری بازدهی تبدیل انرژی خورشیدی به الکتریکی و فاکتور کارکرد سلول.. 57

3-4-1-3-اندازه گیری منحنی های ولتاژ-جریان در تاریکی.. 58

3-4-2-اندازه گیری افت ولتاژ سلول با زمان.. 58

3-4-3-طیف سنجی امپدانس الکتروشیمیایی (EIS) 60

فصل 4-  تحلیل و نتایج مشخصه یابی سلول های ساخته شده. 64

4-1-مقدمه. 64

4-2- آنالیز میکروسکوپ الکترونی روبشی (SEM) نانو ذرات تیتانیوم اکسید. 64

4-3-طیف جذب و عبور آند ها 67

4-4- مشخصه یابی کاتد ها به روش SEM… 68

4-5- مشخصات فوتوولتایی سلول های ساخته شده بر پایه کاتدهای مختلف… 71

4-6- بررسی اثر افزایش تعداد سیکل های سیلار در ساخت کاتد های نانو کامپوزیتی.. 76

4-7-آنالیز امپدانس الکتروشیمیایی.. 79

4-7- بررسی گرافن به عنوان کاتد در QDSSCs 81

4-7-1-ساخت کاتد با پوشش گرافن و کامپوزیت آن با سرب سولفید. 81

4-7-2-بررسی مشخصه های فوتوولتایی سلول ها با کاتد گرافن / سرب سولفید. 82

4-7-3-ساختار ترکیبی گرافن با دیگر ساختار های نانو کامپوزیتی به عنوان کاتد. 83

4-8-مقایسه ی کاتد های نانوکامپوزیتی با کاتد های ترکیبی باگرافن.. 87

فصل 5-  نتیجهگیری و پیشنهادات… 93

5-1-     جمع بندی و نتیجهگیری.. 93

5-2-      پیشنهادات… 94

مقالات ارائه شده. 95

فهرست مراجع.. 96

پیشگفتار
در این تحقیق به ساخت و مشخصه یابی سلول های خورشیدی حساس شده با نقاط کوانتومی پرداخته شده است. برای ساخت آند در این سلول ها معمولاً از نانوذرات تیتانیوم اکسید(TiO2) استفاده می شود که بر روی زیر لایههای شفاف و رسانای اکسید قلع آلاییده شده با فلوئور پوشش داده میشوند. در این جا جهت حساسسازی فوتوآندها از نقاط کوانتومی کادمیوم سولفید و کادمیوم سلنید استفاده میشود. تا به حال کاتدهای مختلفی برای این سلول ها به کار رفته است. در این پژوهش به بررسی کاتدهای مس سولفید و سرب سولفید و مقایسهی آنها پرداخته شده است و بعد از آن روشی جدید تحت عنوان روش لایه نشانی دورهای برای ساخت نانو کامپوزیت مس سولفید/سرب سولفید به عنوان کاتدی مؤثر در سلولهای خورشیدی حساس شده با نقاط کوانتومی با بازدهی بالا معرفی شده است. در این روش کاتدها به روش پوشش پی در پی لایه های مس سولفید و سرب سولفید بر روی شیشههای FTO با روش جذب و واکنش پی در پی یونی (سیلار ) ساخته شدند. با استفاده از کاتد نانو کامپوزیتی مس سولفید/سرب سولفید بازدهی نسبتاً خوبی برای این سلولها به دست آمد که این بازدهی قابل قیاس با کاتد موثر و بهینه شده مس سولفید در سلولهای خورشیدی حساس شده با نقاط کوانتومی میباشد.خواص فوتوولتایی این سلولها مورد بررسی قرار گرفته است. نتایج بررسیها نشان داد که بازدهی این سلولها در مقایسه با کاتدهای مس سولفید و سرب سولفید به ترتیب بیش از2 و 3 برابر افزایش یافته است. پس از معرفی این روش به عنوان روشی نوین در ساخت کاتدهای نانو کامپوزیتی به بهینه کردن این کاتدها و بهینه کردن تعداد سیکلهای سیلار مس سولفید/سرب سولفید پرداخته شده است. در ادامه به منظور افزایش بازدهی و بهینه کردن عملکرد این سلول ها صفحات گرافن نیز به عنوان کاتد مورد استفاده قرار گرفت ،صفحات گرافنی به علت دارا بودن ساختار دو بعدی دارای سطح موثر بالا هستند. گرافن همچنین دارای رسانایی الکتریکی قابل مقایسه با فلزات میباشد. با توجه به سطح موثر مناسب و رسانایی قابل توجه، انتظار میرود کاتدهای متشکل از صفحات گرافنی، خواص کاتالیستی مناسبی در حضور الکترولیت مورد استفاده در سلول های خورشیدی حساس شده با نقاط کوانتومی نشان دهند. بنابراین با توجه به مزایای ذکر شده برای گرافن؛ در این پژوهش به بررسی خواص فوتوولتائیک این سلول ها و تحلیل کارکرد گرافن به عنوان کاتد در این سلولها پرداخته شده است. همچنین نتایج مناسبی که از کاتدهای نانوکامپوزیتی مس سولفید/سرب سولفید در این تحقیق گرفته شده است، منجر به تلفیق این دو کاتد و ارائهی کاتدی ترکیبی از آنها شده است؛ که در اینجا به طور کامل به بررسی و مشخصه یابی خواص فوتوولتایی آنها پرداخته شده است.

مقدمه و سلولهای خورشیدی حساس شده با رنگدانه

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 102
|
امتیاز مطلب : 1
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه صنعتی خواجه نصیرالدین طوسی

دانشکده فیزیک

پایان‌نامه دوره کارشناسی ارشد فیزیک-هسته‌ای کاربردی

 طراحی چشمه پروتون جهت درمان تومورهای چشمی و محاسبات دوزیمتری با استفاده از کد MCNP

استاد راهنما:

دکتر سید فرهاد مسعودی

بهمن 1393

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

در این پایان‌نامه، شبیه‌سازی درمان ملانومای چشم با استفاده از پرتو پروتون، به‌عنوان یک روش درمانی مطلوب بررسی شده است؛ به‌همین منظور ابتدا با استفاده از پرتوهای تک انرژی پروتون، محدودۀ انرژی مورد نیاز جهت درمان یک تومور چشمی محاسبه شده و با توجه به نتایج محاسبات دوزیمتری، به نحوۀ ساختن SOBP به روش ماتریسی پرداخته شده است؛  سپس شبیه‌سازی و تحلیل یک نازل پروتونی، جهت آماده‌سازی پرتو اولیه با انرژی بالا و انجام محاسبات دوزیمتری و ایجاد SOBP به‌منظور تولید دوز یکنواخت در منطقۀ تومور، در دو جهت عمقی و عرضی انجام گرفته است. برای داشتن شرایط بهینه در درمان در روش سوم، با استفاده از انتقال‌دهندۀ برد و با پرتوهایی با انرژی اولیۀ پایین، به شبیه‌سازی پیش از درمان پرداخته شده است. همچنین اثر تعریف محیط واقعی بافت چشم بر روی محاسبات دوزیمتری و نحوۀ طراحی خط پرتو مطالعه شده است. طبق نتایج به دست آمده، اختلاف بیشینه دوز در بافت واقعی نسبت به تعریف آب به‌عنوان مادۀ معادل چشم در روش اسکن پرتو به‌عنوان یک روش ایده‌آل از حدود 15% تا 31% و در روش انتقال‌دهندۀ برد از 12% تا 15% می‌باشد. انتقال پیک براگ در عمق نیز در آب نسبت به بافت واقعی تنها حدود mm2/0 می‌باشد که در قیاس با عدم‌قطعیت موجود در سیستم پروتون‌تراپی قابل چشم‌پوشی است. به‌علاوه اختلاف ضرایب وزنی بهینه‌کنندۀ پیک‌های براگ در بافت واقعی نسبت به آب، در روش اسکن پرتو از حدود 1% تا 18% و در روش انتقال‌دهندۀ برد تا حدود 7% می‌باشد. میزان اختلاف‌ها در نتایج، با تغییر روش تحویل پرتو و با روش‌های کنش‌پذیر کاهش می‌یابد و از آنجایی که در سیستم‌های پروتون‌تراپی از روش دوم برای درمان تومورهای چشمی استفاده می‌شود، تفاوت‌ها قابل صرف‌نظر است. مطابق با نتایج این رساله می‌توان گفت که استفاده از فانتوم آب،  دقت کافی جهت انجام طراحی پیش از درمان را دارا است.

 

کلید واژه: پروتون‌تراپی، ملانومای چشم، پیک براگ، SOBP، ضرایب وزنی.

 

 

فهرست مطالب

عنوان                                                                                                                               صفحه

     فصل اول تومورها و روش‌های مختلف درمان با پرتو

1-1-تعریف تومور و انواع آن. 2

1-2-پرتودرمانی…….. 3

1-2-1-مزایای پرتودرمانی….. 3

1-2-2-فرآیند کلی پرتودرمانی   4

1-2-3-انواع پرتودرمانی………….   4

1-3-مقایسۀ فوتون‌تراپی و پروتون‌تراپی.. 8

1-4-توزیع دوز برحسب عمق برای ذرات مختلف.. 11

1-5-تومورهای چشم  12

1-5-1-ملانوما…. 13

1-5-2-روش‌های مختلف درمان تومورهای چشمی.. 14

     فصل دوم مشخصات فیزیکی و زیستی پروتون‌ها و روش به‌کارگیری آن‌ها در پروتون‌تراپی

2-1-تاریخچۀ پروتون‌تراپی.. 21

2-2-انواع مختلف برهم‌کنش پروتون با ماده 24

2-2-1-تئوری توقف پروتون.. 25

2-2-2- تئوری پراکندگی پروتون.. 31

2-2-3-برهم‌کنش‌های هسته‌ای پروتون.. 37

2-2-4-توزیع دوز عمقی پروتون و پیک براگ… 41

2-3-مشخصات فیزیکی دوز پروتون جهت طراحی درمان. 43

2-4-تحویل پرتو با استفاده از سیستم پراکندگی کنش‌پذیر 44

2-4-1-روش‌های مدولاسیون برد پروتون.. 45

2-4-2-روش‌های پراکندگی پروتون.. 52

2-5-تحویل پرتو با استفاده از سیستم اسکن مغناطیسی.. 56

2-6-کمیت‌های فیزیکی پایه در پروتون‌تراپی.. 59

2-6-1-سینماتیک پروتون.. 59

2-6-2-ارتباط بین آهنگ دوز و جریان پرتو پروتون.. 60

2-7-اثرات زیستی پروتون‌. 62

    فصل سوم مشخصات فیزیکی شتاب‌دهنده‌های پروتونی

3-1-مقدمه 65

3-2-سیکلوترون. 66

3-2-1-سیستم بسامد تابشی (RF) 67

3-2-2-میدان مغناطیسی.. 68

3-2-3-چشمۀ پروتونی.. 69

3-2-4-معرفی پارامترهای مرتبط با فرآیند درمان در پروتون‌تراپی برای یک سیکلوترون.. 70

3-2-5-معرفی پارامترهای توصیف‌کنندۀ مشخصات تعدادی از شتاب‌دهنده‌های سیکلوترونی.. 71

3-3-سینکروترون. 72

3-4-شتاب‌دهنده‌های خطی برپایۀ پروتون‌تراپی.. 74

3-5-سیکلوترون لابراتوار هاروارد (HCL) 74

3-5-1-مشخصات فنی سیکلوترون HCL. 75

3-5-2-سیستم شکل‌دهندۀ پرتو پروتونی برای HCL جهت درمان تومورهای چشمی.. 76

    فصل چهارم شبیه‌سازی نازل و محاسبات دوزیمتری در پروتون‌تراپی تومورهای چشمی

4-1-مقدمه 78

4-2-استفاده از روش اسکن پرتو پروتون جهت تحویل دوز به تومور چشمی.. 78

4-2-1-بررسی اثر تعریف بافت تومور روی تخلیۀ دوز و پیک براگ… 81

4-2-2-نحوۀ محاسبۀ ضرایب وزنی بهینه، جهت ساختن SOBP در شبیه‌سازی درمان.. 83

4-2-2-1-محاسبۀ SOBP برای پروتون‌های تحویلی در روش اسکن پرتو. 85

4-3-شبیه‌سازی نازل HCL. 87

4-3-1-انرژی اولیۀ پرتو پروتون.. 89

4-3-2-کاهندۀ انرژی (انتقال‌دهندۀ برد) در نازل.. 91

4-3-3-صفحات آلومینیومی در نازل.. 92

4-3-4-طیف پرتو خروجی از نازل.. 94

4-3-5-محاسبات دوزیمتری در فانتوم چشم به کمک طیف خروجی از نازل.. 95

4-3-6-بررسی آهنگ دوز تحویلی به تومور چشم براساس جریان خروجی از شتاب‌دهنده 98

4-4-استفاده از روش انتقال‌دهندۀ بردجهت تحویل دوز به تومور چشمی.. 99

4-4-1-بررسی اثر تعریف بافت تومور روی تخلیۀ دوز و پیک براگ… 102

4-4-2-محاسبۀ SOBP برای پروتون‌های تحویلی در روش انتقال‌دهندۀ برد. 104

4-4-3-تعیین پارامترهای درمانی برای SOBP. 107

4-5-بررسی میزان نوترون‌های ثانویۀ تولید شده در نازل HCL. 108

4-6-نتیجه‌گیری.. 109

4-7-پیشنهادات.. 112

فهرست مراجع ……………………………………………………………………………………………………………………………………311

فهرست جدول‌ها

عنوان                                                                                                                               صفحه

جدول ‏2‑1. فهرستی از مراکز پروتون‌تراپی [33] 23

جدول 2‑‏2. برد پروتون متناظر با انرژی جنبشی ذرۀ فرودی [39] 29

جدول ‏2‑3. درصد ذرات ثانویۀ تولید شده طی برخوردهای ناکشسان پروتون‌های 150MeV با هستۀ اتم اکسیژن [48] 38

جدول 3-1. بخشی از پارامترهای اصلی و توصیف‌کنندۀ مشخصات فیزیکی شتاب‌دهنده برای تعدادی از سیکلوترون‌ها در IBA، ACCEL و JINR LNP [105]……………………………………………………………………………………………………………………………………..74

جدول 4-1. عناصر سازندۀ ترکیبات به‌کار گرفته شده در فانتوم چشم در روش اسکن مغناطیسی پرتو [119]…………… 82

جدول 4-2. ضرایب وزنی بهینه‌کنندۀ پرتوهای تابیده شده به فانتوم چشم و آب جهت ساختن SOBP در روش اسکن پرتو ………………  ………………………………………………………………………………………………………………………………………………………………………………89

جدول 4-3. مشخصات کلی نازل شبیه‌سازی شده براساس نازل HCL……………………………………………………………………………….93

جدول 4-4. انرژی متوسط پرتو پروتون روی سطح خروجی لگزان به‌عنوان مادۀ کاهندۀ انرژی………………………………………..96

جدول 4-5. انرژی متوسط طیف نهایی پرتو پروتون پس از خروج از نازل………………………………………………………………………….99

جدول 4-6. ضرایب وزنی جهت بهینه‌سازی پیک‌های براگ‌ اولیه متناظر با ضخامت‌های مختلف استوانۀ لگزان…………….102

جدول ‏4‑7. ساختارهای داخلی چشم و ابعاد آن‌ها [104] 100

جدول ‏4‑8. ترکیبات اصلی ساختارهای داخلی چشم، نسبت جرم اتمی و چگالی آن‌ها [104] 100

جدول 4-9. انرژی متوسط پروتون خروجی از انتقال‌دهندۀ برد متناظر با ضخامت‌های مختلف ستون آب…………………….106

جدول ‏4‑10. ضرایب وزنی بهینه کنندۀ پیک‌های اولیه جهت ساختن SOBP یکنواخت… 105

جدول ‏4‑11. تعیین پارامترهای درمانی برای SOBP ایجاد شده در روش اسکن پرتو. 107

جدول ‏4‑12. تعیین پارامترهای درمانی برای SOBP ایجاد شده در روش انتقال دهندۀ برد. 107

 

فهرست شکل‌‌ها

عنوان                                                                                                                               صفحه

شکل 1-1. پرتودرمانی با شدت مدوله شده با استفاده از فوتون (IMRT) 9

شکل 1-2. مقایسۀ توزیع دوز بین روش درمانی IMRT در سمت چپ وIMPT  در سمت راست… 10

شکل 1-3. افزایش دوز دریافتی توسط بافت سالم در ناحیۀ ابتدایی و انتهایی در فوتون‌تراپی در مقایسه با پروتون‌تراپی…. 10

شکل 1-4. نمودار توزیع دوز عمقی نسبی ذرات مختلف در فانتوم آب [4] 12

شکل 1-5. نمای کلی از یک سیستم پروتون‌تراپی برای تومورهای چشمی [13] 18

شکل 2-1. نمودار تغییرات توان توقف برحسب انرژی پروتون و الکترون فرودی برای مواد مختلف [38]…………………………27

شکل 2-2. نمودار تغییرات برد پروتون برحسب انرژی در مواد مختلف [39]…………………………………………………………………….28

شکل 2-3. نمودار دوز عمقی برای پرتو پروتون و پیک براگ و نمایش برد و پهن‌شدگی انرژی [4]………………………………..29

شکل 2-4. نمایش پاشیدگی برد براساس  [38]………………………………………………………………………………………………………..30

شکل 2-5. پاشیدگی برد پروتون برحسب انرژی پرتو فرودی در مواد مختلف [40]…………………………………………………………30

شکل 2-6. نمای کلی از پراکندگی رادرفورد. 31

شکل 2-7. نمایش زاویۀ پراکندگی و میزان انرژی از دست رفته برای پروتون‌های MeV160 در مواد مختلف [39] 32

شکل 2-8. پراکندگی کولنی چندگانه برای پروتون ناشی از یک ورقۀ نازک… 33

شکل 2-9. بررسی دقت فرمول هایلند در مقایسه با اندازه‌گیری‌های تجربی برای زاویۀ پراکندگی پروتون [45] 34

شکل 2-10. نمودار شار پروتون برحسب انرژی جهت بررسی ضخامت‌های مختلف لگزان از 5 تا 9 سانتیمتر که به‌وسیلۀ کد MCNPX محاسبه شده است. 36

شکل 2-11. نمایی از یک سیستم شکل‌دهندۀ پرتو پروتون با استفاده از کاهش‌دهنده‌های دوتایی؛ در این سیستم S1 پراکنندۀ اول، RM مدولاتور برد، SS پراکنندۀ دوم، AP، موازی مخصوص بیمار و RC متعادل کنندۀ برد جهت هماهنگی برد پروتون با مرزهای انتهایی تومور با بافت سالم است. 36

شکل 2-12. نمایش سهم پروتون‌های اصلی و ثانویه در توزیع دوز کل در پیک براگ… 39

شکل 2-13. سطح مقطع برهم‌کنش ناکشسان برحسب برد پروتون فرودی [40] 39

شکل 2-14. احتمال رخ دادن برهم‌کنش ناکشسان برحسب برد پروتون فرودی با انرژی اولیۀ MeV 209 [40] 40

شکل 2-15. نمودار توزیع دوز برحسب عمق و پیک براگ و نمایش انباشت هسته‌ای [4] 40

شکل 2-16. نمایش سهم هر کدام از پدیده‌های فیزیکی در شکل‌گیری پیک براگ [4] 41

شکل 2-17. مجموعه ای از پیک براگ‌های اندازه‌گیری شده برای پروتون‌هایی با انرژی MeV 69 تا MeV 231. 42

شکل 2-18. شکل پیک براگ در صورت حضور (منحنی مشکی) و عدم حضور (نقطه‌چین) برهم‌کنش‌های هسته‌ای [51] 42

شکل 2-19. نمایش پارامترهای فیزیکی توصیف‌کنندۀ توزیع دوز SOBP [4] 44

شکل 2-20. نمایش توزیع دوز عرضی و پارامترهای فیزیکی توصیف‌کنندۀ آن [4] 44

شکل 2-21. SOBP با پهناهای مختلف وابسته به تعداد پیک براگ‌های به‌کار گرفته شده [4] 46

شکل 2-22. نمایش کلی از برهم‌نهی پیک براگ‌های بهینه شده با فاکتورهای وزنی و تشکیل SOBP. 46

شکل 2-23. نمونه‌هایی از انتقال‌دهنده‌های برد که جهت مدولاسیون در مسیر پرتو پروتون قرار داده می‌شوند. 48

شکل 2-24. نمونه‌ای از چرخ مدولاتور برد. 49

شکل 2-25. نمودار شار نوترون برحسب فاصلۀ عرضی از ایزوسنتر [57] 49

شکل 2-26. مقایسۀ شار نوترون تولید شده در صورت حضور و عدم حضور چرخ مدولاسیون برد [57] 50

شکل 2-27. نمایی از یک فیلتر شیاردار در جهت‌های مختصاتی مختلف در دستگاه دکارتی[69] 51

شکل 2-28. نمایش یک فیلتر مدوله کنندۀ برد زمانی که محور آن به اندازۀ θ درجه چرخش داشته باشد. 51

شکل 2-29. نمایی از یک سیستم پراکندگی ساده با یک پراکنندۀ مسطح.. 53

شکل 2-30. نمایی از سیستم پراکندگی دوگانه با استفاده از پراکنندۀ منحنی‌شکل.. 53

شکل 2-31. نمایی از یک پراکنندۀ منحنی‌شکل که ترکیبی از سرب و لگزان در کنار یک‌دیگر است. 54

شکل 2-32. نمایی از سیستم پراکندگی دوگانه با استفاده از پراکنندۀ دوحلقه‌ای.. 55

شکل 2-33. نمایش توزیع دوز ایجاد شده توسط هر بخش از پراکنندۀ دو حلقه‌ای و برهم‌نهی آن‌ها [81] 55

شکل 2-34. نمایی از سیستم پراکندگی دوگانه با استفاده از حلقه‌های مسدودکننده 56

شکل 2-35. توزیع دوز ایجاد شده توسط حلقه‌های مسدودکننده در سیستم پراکندگی دوگانه [82] 56

شکل 2-36. نمای کلی از سیستم شکل‌دهندۀ پرتو که در اصلاح رابطۀ آهنگ دوز ( معادلۀ (‏2‑34) ) به‌کار گرفته شده است. 61

شکل 2-37. نمایش وابستگی fMOD به زمان حضور عمیق ترین پیک در مدولاسیون برد [4] 62

شکل 3-1. میانگین میدان مغناطیسی به‌صورت تابعی از شعاع مدار پروتون در سیکلوترون IBA (بالا) [103]  و سیکلوترون PSI (پایین) [102] ………………………………………………………………………………………………………………………………………………………………..69

شکل 3-2. شکل شماتیک از چشمۀ یونی مورد استفاده در یک سیکلوترون [4]………………………………………………………………70

شکل 3-3. بازده سیستم انتخاب انرژی مربوط به سیکلوترون IBA برحسب برد پروتون‌های ورودی به نازل [104] 71

شکل 3-4. نمای کلی از یک چرخه در سینکروترون که شامل تزریق پروتون‌های MeV 2 یا MeV 7، شتاب پروتون‌ها تا انرژی دلخواه در زمانی کمتر از 5/0 ثانیه، خروج آهستۀ پروتون‌های شتاب داده شده به خط پرتو در زمانی بین 5-5/0 ثانیه و در آخر کاهش سرعت و تخلیۀ پروتون‌های استفاده نشدۀ باقی‌مانده [4] 73

شکل 3-5. نمای کلی از نازل HCL که برای درمان تومورهای چشمی به‌کار گرفته شده است و به‌ترتیب شامل چرخ مدولاتور برد (K)، موازی‌ساز اول (F)، انتقال‌دهندۀ برد با ضخامت متغیر (L)، کاهندۀ انرژی با ضخامت ثابت (G)، موازی‌ساز دوم (H)، آشکارساز نظارت (B)، صفحات آشکارساز یونی (J)، محفظۀ خالی (C)، موازی‌ساز مخروطی شکل (D) و موازی‌ساز مخصوص بیمار (E) می‌باشد [114]……………………………………………………………………………………………………………………………………….78

شکل 4-1. نمای کلی از فانتوم شبیه‌سازی شده و مورد استفاده در محاسبات دوزیمتری در روش اسکن مغناطیسی پرتو. 79

شکل 4-2. نمونه‌ای از پیک‌های براگ‌ تشکیل شده در فانتوم چشم با ترکیبات واقعی تومور در روش اسکن پرتو………….80

شکل 4-3. توزیع دوز نسبی برحسب عمق برای پروتون MeV 32 و MeV 24 و مقایسۀ آن‌ها در دو فانتوم چشم با ترکیبات واقعی تومور (نقطه‌چین) و آب (منحنی مشکی)………………………………………………………………………………………………………81

شکل 4-4. منحنی ایزودوز نسبی مربوط به تابش پرتو پروتون با انرژی MeV 32 در فانتوم آب ( منحنی قرمز رنگ) و محیط چشمی (منحنی نقطه‌چین)…………………………………………………………………………………………………………………………………………82

شکل 4-5. نمایی از یک ماتریس  به‌عنوان ماتریس توصیف‌کنندۀ پیک‌های براگ مشارکت‌کننده در تولید SOBP تعداد ستون‌ها بیانگر تعداد پیک‌ها و تعداد سطرها بیانگر تعداد وکسل‌ها است.. 83

شکل 4-6. تعیین درایۀ مربوط به بیشینه مقدار دوز برای هر پیک براگ ………………………………………………………………………….84

شکل 4-7. معادلۀ ماتریسی جهت محاسبۀ ضرایب وزنی در این شکل، ماتریس‌ها از چپ به راست به‌ترتیب برابر با ماتریس مربوط به پیک‌های براگ، ماتریس ضرایب وزنی و ماتریس مربوط به بخش مسطح SOBP می‌باشند. ماتریسی که دور آن خط کشیده شده، ماتریس مجهول مربوط به ضرایب وزنی است…………………………………………………………………………………………..84

شکل 4-8. SOBP حاصل از برهم‌نهی پیک‌های براگ بهینه شده داخل تومور در هر دو فانتوم منحنی مشکی مربوط به آب و منحنی نقطه‌چین مربوط به محیط چشمی است………………………………………………………………………………………………………….86

شکل 4-9. بررسی میزان یکنواختی توزیع دوز  SOBP به دست آمده با ضرایب وزنی بهینه شده به کمک فانتوم آب در محیط چشمی با ترکیبات واقعی تومور (منحنی نقطه‌چین)………………………………………………………………………………………………….87

شکل 4-10. نمای کلی از نازل شبیه‌سازی شده با کد MCNPX به‌عنوان سیستم کنش‌پذیر جهت تحویل پرتو پروتون به تومور………………………………………………………………………………………………………..          .           …        …                         88

شکل 4-11. توزیع دوز برحسب عمق برای پرتو پروتون تک انرژی MeV 159 در فانتوم سادۀ آب که بردی در حدود cm18 دارد…………………………………………………………………………………………………   ……….                   …              ……       .90

شکل 4-12. توزیع دوز عرضی گاوسی شکل برای پرتو پروتون تک انرژی MeV 159 در فانتوم سادۀ آب…………………….90

شکل 4-13. منحنی ایزودوز برای پرتو پروتون تک انرژی MeV 159 در فانتوم سادۀ آب. همان‌طور که از شکل نیز مشخص است، جهت تابش پرتو موازی محور Y می‌باشد…………………………………………………………………………………………….               ..90

شکل 4-14. شار پروتون برحسب انرژی روی سطح خروجی لگزان که از سمت راست به چپ به ترتیب متناظر با ضخامت‌های 3/9، 55/9 و 8/9 سانتیمتر برای استوانۀ لگزان می‌باشد………………………………………………………………………………………           …91

شکل 4-15. توزیع زاویه‌ای و میزان واگرایی پرتو پروتون بعد از عبور از لگزان روی سطح خروجی لگزان………………………92

شکل 4-16. مقایسۀ منحنی ایزودوز برای سطوح 56% و 89% در فانتوم آب در صورت حضور (منحنی قرمز) و عدم حضور (منحنی مشکی) صفحات آلومینیومی…………………………………………………………………………………………………………………………………….93

شکل 4-17. مقایسۀ توزیع دوز عرضی در بخش ورودی فانتوم آب در صورت حضور (منحنی قرمز) و عدم حضور (منحنی مشکی) صفحات آلومینیومی………………………………………………………………………………………………………………          ……………      .93

شکل 4-18. شار پروتون برحسب انرژی روی سطح خروجی نازل، نمودارها از راست به چپ متناظر با استوانۀ لگزان به ضخامت‌های 3/9، 55/9 و 8/9 سانتیمتر می‌باشند………………………………………………………………………………………………………………..94

شکل 4-19. توزیع زاوبه‌ای و میزان واگرایی طیف پروتون روی سطح خروجی نازل و قبل از ورود به فانتوم متناظر با لگزان به ضخامت 55/9 سانتیمتر…………………………………………………………………………………………………………………………………………………..95

شکل 4-20. نمایی از فانتوم مورد استفاده جهت انجام محاسبات دوزیمتری برای طیف خروجی از نازل……………………..96

شکل 4-21. توزیع دوز عمقی و پیک‌های براگ اولیه در فانتوم چشم محتوای آب ناشی از طیف‌های خروجی از نازل، از راست به چپ به‌ترتیب متناظر با ضخامت‌های 3/9، 55/9 و 8/9 سانتیمتر…………………………………………………………………………96

شکل 4-22. توزیع دوز عمقی با درنظرگرفتن وزن مناسب برای هر کدام از طیف‌های خروجی از نازل و SOBP حاصل از برهم‌نهی پیک‌های براگ‌ بهینه شده با ضرایب وزنی…………………………………………………………………………………………………………….97

شکل 4-23. توزیع دوز عرضی بهینه شده با ضرایب وزنی. نقطۀ cm 4/0- در محور افقی نمودار، نقطۀ شروع فانتوم شبیه‌سازی شده است؛ از این‌رو دوز عرضی اندازه‌گیری شده نامتقارن دیده می‌شود…………………………………………………………98

شکل 4-24. سطح مقطع طولی مدل واقعی چشم برای شبیه‌سازی درمان در روش انتقال‌دهندۀ برد…………………………..99

شکل 4-25. توزیع دوز برحسب عمق و پیک‌های براگ اولیه در مدل واقعی چشم در روش انتقال‌دهندۀ برد پیک‌ها از راست به چپ به‌ترتیب متناظر با ضخامت‌های 3 تا 75/3 سانتیمتر ستون آب می‌باشند…………………………………………………..102

شکل 4-26. مقایسه‌ای بین توزیع دوز نسبی برحسب عمق و پیک‌های براگ‌ در دو  فانتوم چشم با ترکیبات واقعی و آب  از راست به چپ متناظر با ضخامت‌های 3، 35/3 و 65/3 سانتیمتر ستون آب…………………………………………………………………..103

شکل 4-27. مقایسه ای بین منحنی ایزودوز نسبی در فانتوم چشم با ترکیبات واقعی (نقطه‌چین) و آب (منحنی قرمز) مربوط به طیف پروتونی خروجی از ستون آب به ضخامت 3 سانتیمتر………………………………………………………………………………..104

شکل 4-28. SOBP حاصل از برهم‌نهی پیک‌های براگ بهینه شده با ضرایب وزنی در هر دو فانتوم چشم با ترکیبات واقعی (نقطه‌چین) و آب (منحنی مشکی)……………………………………………………………………………………………………………………………………….105

شکل 4-29. SOBP حاصل از اعمال فاکتورهای وزنی بهینه شده با فانتوم آب روی پیک‌های براگ ایجاد شده در بافت واقعی چشم (منحنی نقطه‌چین) و مقایسۀ آن با SOBP حاصل از شبیه‌سازی با فانتوم آب (منحنی مشکی) ………………………………………………………………………………………………………..        ………..  ……………..      …..   ……..    …………………..106

شکل 4-30. طیف انرژی مربوط به شار نوترون‌های تولید شده به ازای هر پروتون در نازل HCL……………………………………108

شکل 4-31. توزیع دوز ذرات ثانویه برحسب عمق در فانتوم آب برای فوتون (    )، نوترون (    ) و الکترون (   ) مربوط به نازل HCL……………………………………………………………………………………………………………………….. ……………………

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 117
|
امتیاز مطلب : 4
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده‌ی علوم

 

پایان‌نامه‌ی کارشناسی ارشد در رشته‌ی

 

فیزیک اپتیک و لیزر

 

 

خواص بلور فوتونی دوبعدی متشکل از استوانه‌هایی با پوشش فراماده در یک شبکه مربعی

 

 

 

استاد راهنما

دکترمحمود حسینی فرزاد

 

 

اسفندماه 1393

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

 

خواص بلور فوتونی دوبعدی متشکل از استوانه هایی با پوشش

 فراماده در یک شبکه مربعی

 

 

 

در این رساله به بررسی خواص بلور فوتونی دوبعدی متشکل از آرایه‎های مربعی که از استوانه‌های طویل دی الکتریک با پوشش فراماده ساخته شده اند، پرداخته می‌شود. نکته حائز اهمیت این است که سلول واحد این بلور فوتونی برای پارامترهای خاص هندسی و اپتیکی انتخاب شده در محدوده مشخصی از فرکانس‌ها، خاصیت نامرئی شدن دارد. طیف عبور بلور فوتونی متشکل از این یاخته ها (سلول واحد)، با استفاده از روش بسط موج تخت، توسط نرم افزاد متمتیکا برای تعداد لایه های مختلف رسم شده است. در تعداد مشخصی از لایه ها، یکی از گاف‎های فوتونی (نسبت به بلور فوتونی بدون پوشش)، که قبلاً در تعداد کمتری از لایه های بلور ظاهر شده بود، از بین میرود. این پدیده، احتمال نامرئی شدن این نوع بلور فوتونی با پوشش فراماده را تقویت می‎کند. این خاصیت فقط در این نوع از بلور ها مشاهده می‎شود و در بلور فوتونی دیگری تا بحال گزارش نشده است. در این پدیده که منجر به حذف یکی از گاف های بلور فوتونی می‎شود، با تغییر دوره تناوب شبکه مربعی، شماره‎ی گاف حذف شده و محدوده فرکانسی آن جابجا می‎شود.

 

کلمات کلیدی: کاهش سطح مقطع پراکندگی از استوانه های طویل- بلور فوتونی- فراماده

فهرست مطالب

 

 

عنوان                                                                                                                      صفحه

 

فصل اول: مقدمه

1-1 فراماده چیست… 2

1-2 تاریخچه فرامواد. 2

1-3 کاربردهای فراماده. 4

1-4 مروری بر تحقیقات انجام شده در زمینه فراماده. 4

1-5 تاریخچه بلورهای فوتونی.. 6

1-6 مفهوم بلورهای فوتونی.. 6

1-7 زمینه های کاربردبلورهای فوتونی.. 9

1-7-1 موج برها 9

1-7-2 میکرو کاواک ها 10

1-7-3 فیلترها 10

1-7-4 فیبرهای  بلور فوتونی.. 10

 

فصل دوم: فرامواد

2-1 فرامواد و کاهش سطح مقطع پراکندگی.. 14

2-2 اصول نظری برای محاسبه ضریب پراکندگی استوانه بینهایت دی الکتریک… 15

2-2-1 روابط مربوط به میدان‎های الکتریکی.. 17

2-2-2 روابط مربوط به میدان های مغناطیسی.. 19

عنوان                                                                                                                      صفحه

 

2-2-3 شرایط مرزی میدان های الکتریکی و مغناطیسی.. 20

2-2-4 ماتریس پراکندگی.. 21

2-3 استوانه رسانا ( PEC ) 23

2-4 شرایط ایجاد شفافیت برای استوانه دی الکتریک و استوانه رسانا 24

2-4-1 دسته بندی شرایط شفافیت برای قطبش های مختلف استوانه  بینهایت
(دی الکتریک و رسانا) 24

2-4-2 اثبات رابطه ( ) برای شفافیت برای استوانه دی‎الکتریک بینهایت… 25

2-5 نتایج تجربی کاهش پراکندگی از استوانه بینهایت دی الکتریک پوشیده شده
با لایه ای از فراماده. 28

2-5-1 تحلیل حالت ایستا 31

2-6 کاهش پراکندگی از سطح اجسام کروی پوشیده شده با لایه ای از فراماده. 34

2-6-1 پنهان سازی کره با پوشش فراماده. 34

2-6-2 اصول نظری کاهش پراکندگی از سطح اجسام کروی.. 34

2-6-3 نمودارهای تجربی مربوط به کاهش پراکندگی از سطح کره با پوشش فراماده. 36

2-7 سیستم چند ذره ای و کاهش شدید سطح مقطع پراکندگی کروی.. 39

 

فصل سوم: خواص اپتیکی بلورهای فوتونی

3-1 خواص بلورهای فوتونی.. 43

3-1-1 شبکه بلور فوتونی: 43

3-1-2 طریقه رسم منطقه اول بریلوئن  یک شبکه: 45

3-2 تئوری بلاخ 47

3-2-1 اثبات تئوری بلاخ.. 48

3-3 امواج بلاخ و ناحیه بریلوئن.. 49

3-4 مد های ویژه بلور های فوتونی.. 50

عنوان                                                                                                                      صفحه

 

3-4-1 بردار های موج مساّله ویژه مقداری.. 51

3-4-2 بردارهای موج مساله ویژه مقداری در دو بعد. 54

3-5  منشاُ گاف نواری فوتونی: 55

3-6 روش های عددی در تحلیل بلورهای فوتونی.. 57

3-7 روش بسط امواج تخت… 59

3-8 محاسبات نظری مربوط به بسط امواج تخت… 59

3-8-1 قطبش…. 59

3-9 معادلات انتشار در بلور فوتونی به روش بسط موج تخت… 60

3-10 روش تئوری محاسبه طیف عبوری از بلور فوتونی به روش بسط موج تخت… 62

3-10-1 اثبات رابطه (3-57) 64

3-10-2 اثبات روابط (3-58) و (3-59) 67

3-11 تبدیل فوریه برای تابع دی‎الکتریک در یک شبکه مربعی.. 67

 

فصل چهارم: طیف عبوری از بلور فوتونی با پوشش فراماده

4-1 مقایسه طیف عبوری از بلور فوتونی با پوشش فراماده برای تعداد لایه‌های مختلف… 73

4-2 مقایسه طیف عبوری از بلور فوتونی با پوشش فراماده برای تعداد لایه‌‌های مختلف… 83

4-3 مقایسه طیف عبوری از بلور فوتونی با پوشش فراماده برای دو بلور فوتونی متفاوت.. 87

4-4 نتیجه گیری.. 89

 

 

 

 

 

 

عنوان                                                                                                                      صفحه

 

فصل پنجم: نتیجهگیری و پیشنهادات

5-1- نتیجه گیری.. 91

5-2- پیشنهادات.. 93

 

منابع.. 94

 

چکیده و صفحه عنوان به انگلیسی

 

 

فهرست شکل­ها

 

 

عنوان                                                                                                                      صفحه

شکل(1-1): نمونه‎هایی از ساختارهای بلور فوتونی.. 8

شکل(2-1). بردارهای قطبش برای استوانه دی الکتریک و پوشش فراماده. 15

شکل (2-2). استوانه نامحدود دیالکتریک، پوشیده شده با لایه ای از فراماده 16

شکل(2-3). جدول کاهش سطح مقطع پراکندگی.. 29

شکل(2-4). نمودار تابع  برحسب . 30

شکل(2-5). نمودار تابع  برحسب . 30

شکل (2-6). بازده پراکندگی برای حالت بدون پوشش و حالت با پوشش 31

شکل (2-7). بازده پراکندگی کل، برای استوانه بینهایت دی الکتریک سه زاویه مختلف تابشی. 32

شکل(2-8) ذره کروی پوشیده شده با لایه ای از فراماده. 35

شکل (2-9).  کاهش سطح مقطع پراکندگی برای کره. 36

شکل (2-10) پراکندگی میدان الکتریکی در صفحه xz. 37

شکل(2-11). بیشترین مقدار   در الگوی سطح مقطع پراکندگی، برای یک سیستم شامل دوذره کروی   39

شکل (3-1). شبکه های بلور و وارون در حالت یک بعدی. 44

شکل (3-2). در این شکل شبکه وارون مربعی.. 45

شکل(3-3). ناحیه بریلوئن اول و اولین منطقه تقسیم ناپذیر بریلوئن در یک شبکه مربعی.. 46

شکل(3-4).  ناحیه بریلوئن اول و اولین منطقه تقسیم ناپذیر بریلوئن در یک شبکه ملثی.. 46

شکل (3-5): ساختار باند فوتونی برای سه فیلم چند لایه. 57

 

عنوان                                                                                                                      صفحه

 

شکل (3-6) سطح مقطع بلور فوتونی دو بعدی متشکل از استوانه های طویل دی‌الکتریک 60

 

 

فهرست نمودارها

 

 

عنوان                                                                                                                      صفحه

نمودار(4-1). طیف عبور بلور فوتونی تک لایه. 74

نمودار(4-2). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی سه لایه. 75

نمودار(4-3). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی پنج لایه. 76

نمودار(4-4). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی هفت لایه. 77

نمودار(4-5). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی ده لایه. 78

نمودار(4-6). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی پانزده لایه 79

نمودار(4-7). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی بیست لایه. 80

نمودار(4-8). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی بیست پنج لایه. 81

نمودار(4-9). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی سی لایه 82

نمودار(4-10). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی بیست لایه. 84

نمودار(4-11). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی بیست پنج لایه. 85

نمودار(4-12). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی سی لایه. 86

نمودار(4-13). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی بیست لایه 87

نمودار(4-14). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی بیست لایه. 88

نمودار(4-15). طیف عبور بلور فوتونی دو بعدی با آرایه مربعی بیست لایه. 88

مقدمه

 

 

1-1 فراماده [1] چیست

 

واژه متامتریال در سال 1999 توسط رودگروالسر [2] از دانشگاه Texas نامگذاری شد]1[. واژه متا یک واژه یونانی به معنی فرا است. بنابراین می‎توان متامتریال را فرا ماده ترجمه کرد. نامی است با معنی برای موادی که ویژگی های آنها فراتر از محدودیت های مواد طبیعی است.

فرامواد متشکل از اجزایی (سلول واحد ) در ابعاد خیلی کوچکتر از طول موج تابشی هستند، که هرچند در ابعاد کوچکتر از طول موج ناهمگنند، ولی مانند مواد طبیعی به طور متوسط و مؤثر می‎توان ویژگی های یک محیط همگن را به آنها نسبت داد.

 

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 111
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده علوم

بخش فیزیک

پایان­نامه کارشناسی ارشد فیزیک

(گرایش نظری و اختر فیزیک)

عنوان:

لایه­های سیاه گرانش گوس- بونه در حضور دو کلاس الکترودینامیک غیرخطی

استادان راهنما:

دکتر محمدحسین دهقانی

دکتر سیدحسین هندی

بهمن­ ماه 92

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

 

­ لایه­های سیاه گرانش گوس- بونه در حضور

دو کلاس الکترودینامیک غیرخطی

 

 

 

در این رساله، با در نظرگرفتن دو کلاس از الکترودینامیک غیرخطی، به بررسی جواب­های لایه­ی سیاه در گرانش گوس- بونه می­پردازیم. این دو کلاس از الکترودینامیک بورن- اینفلد گونه، که به الکترودینامیک غیرخطی لگاریتمی و نمایی معروفند دارای خصوصیات جالب توجه در مطالعه­ی میدان الکترومغناطیسی و نیز بررسی هندسی فضازمان می­باشند. پس از مطالعه­ی خصوصیات هندسی فضازمان، به بررسی کمیت­های پایا و ترمودینامیکی پرداخته و تاثیرات حضور این میدان غیرخطی را بررسی می­کنیم. در نهایت به بررسی قانون اول ترمودینامیک خواهیم پرداخت.

 

 

 

 

فهرست

 

عنوان                                                                                                                         صفحه

فصل اول. 1

مقدمه. 1

 

فصل دوم. 6

نظریه­ها­ی الکترودینامیک غیرخطی و معرفی دو کلاس جدید. 6

2-1  نظریه­ی خطی الکترودینامیک: نظریه­ی ماکسول. 7

2-2  نظریه­ی غیرخطی الکترودینامیک: نظریه­ی بورن- اینفلد(BI) 9

2-3  نظریه­ی الکترودینامیک غیرخطی: نظریه­ی توانی ناوردای ماکسول (PMI) 11

2-4  نظریه­ی غیرخطی الکترودینامیک: نظریه­ی لگاریتمی(LNEF) 14

2-5  نظریه­ی غیرخطی الکترودینامیک: نظریه­ی نمایی(ENEF) 16

 

فصل سوم. 20

نسبیت عام، گرانش گوس- بونه، هندسه و ترمودینامیک سیاه­چاله­ها 20

3-1    نسبیت عام و اصول اینشتین.. 21

3-1-1  اصل ماخ. 22

3-1-2  اصل هم­ارزی.. 23

3-1-3  اصل هموردایی عام. 23

3-1-4  اصل جفت شدگی گرانش کمینه. 24

3-1-5  اصل تناظر. 24

3-2  هندسه و متریک.. 24

3-3  تانسور اینشتین.. 26

3-4   گرانش مشتقات بالاتر. 28

3-5   گرانش لاولاک.. 30

3-6  کنش مرزی.. 33

3-7   بردارهای کیلینگ و تقارن­های فضازمان. 34

3-8  سیاه­چاله چیست؟. 36

3-9  خصوصیات هندسی سیاه­چاله. 37

3-10  ترمودینامیک سیاه­چاله­ها 38

3-10-1  چهار قانون مکانیک سیاه­چاله­ها 39

3-10-2  دما 40

3-10-3  آنتروپی.. 41

3-10-4  بار الکتریکی.. 43

3-10-5  پتانسیل الکتریکی.. 44

3-10-6  سرعت زاویه­ای.. 44

3-11  روش کانترترم در گرانش… 45

 

فصل چهارم. 47

جواب­های لایه­ی سیاه گرانش گوس- بونه در حضور دو کلاس جدید از الکترودینامیک غیرخطی   47

4-1  معادلات میدان. 48

4-2 گرانش گوس- بونه در حضور الکترودینامیک غیرخطی نمایی.. 50

4-3 گرانش گوس- بونه در حضور الکترودینامیک غیرخطی لگاریتمی.. 56

4-4  بررسی خصوصیات ترمودینامیکی سیاه­چاله گوس-بونه در حضور الکترودینامیک غیرخطی نمایی   58

4-4-1  کمیت­های ترمودینامیکی و پایا 59

4-4-2  انرژی به­عنوان تابعی از کمیت­های پایا 61

4-5 بررسی خصوصیات ترمودینامیکی سیاه­چاله گوس- بونه در حضور الکترودینامیک غیرخطی لگاریتمی   62

4-5-1 کمیت­های ترمودینامیکی و پایا 62

4-5-2 انرژی به­عنوان تابعی از کمیت­های پایا ………………………………………………64

 

فصل پنجم. 66

نتیجه­گیری و پیشنهادات.. 66

5-1 خلاصه و نتیجه­گیری.. 67

5-2 پیشنهادات.. 71

 

پیوست …………………………………………………………………………………………………………………72

مراجع. 73

 

 

 

 

فهرست جدول­ها و نمودارها

 

شکل 2-1: نمودار تابع  به ازای پارامترهای غیرخطی مختلف………………………………………..13

شکل 2-2: نمودار تابع  برحسب  به ازای ……………………………………..18

جدول 1: مقدار  برای  به ازای مقادیر مختلف های کوچک…………..19

شکل 5-1: نمودار تابع  برحسب ……………………………………………………………………….60

 

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 91
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده علوم

پایان­ نامه کارشناسی ارشد در رشته­ ی  فیزیک نظری

گرایش اخترفیزیک

عنوان:

کرمچاله­ های باردار در حال انبساط در گرانش اینشتین – ماکسول – دایلتن

استاد راهنما:

دکتر نعمت­ ا… ریاضی

 

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل اول: مقدمه……………………………………………………………………………………………………………………….. 2

 

فصل دوم: شرایط انرژی کیهان

2-1- مقدمه…………………………………………………………………………………………………………………………… 13

2-2-شرایط انرژی…………………………………………………………………………………………………………………. 14

2-2-1- شرایط انرژی نول (NEC)………………………………………………………………………………… 14

2-2- مواردی در فیزیک که این شرایط نقض می­شود و مواردی

که این شرایط صادق‌اند……………………………………………………………………………………………………….. 17

2-3- موارد متناقض با شرایط انرژی……………………………………………………………………………………. 18

 

فصل سوم: پاسخ­های کرمچاله­ای گرانش اینشتین­- ماکسول- دایلتون

3-1- کنش، رابطه­های میدان، برای گرانش اینشتین­- ماکسول­­- دایلتون……………………….. 22

3-2- بررسی تابعیت  بر حسب  برای سه دسته از جواب­ها از روی

نمودار و پیدا کردن شعاع گلوگاه کرمچاله………………………………………………………………………….. 42

3-2-1- دسته اول…………………………………………………………………………………………………………… 42

3-2-2- دسته دوم و سوم………………………………………………………………………………………………. 44

3-3- توضیح درمورد ویژگی­های سه دسته………………………………………………………………………… 45

3-5-1- شرط انرژی ضعیف (WEC) برای حل­های کلاس اول…………………………………. 47

3-5-2- شرط انرژی ضعیف (WEC)برای حل­های دسته دوم……………………………………. 47

3-5-3- شرط انرژی ضعیف (WEC) برای حل­های کلاس سوم……………………………….. 48

3-5- بار الکتریکی و میدان الکتریکی کرمچاله…………………………………………………………………… 49

3-6-1- میدان الکتریکی برای حل کلاس اول……………………………………………………………… 49

3-6-2- میدان الکتریکی برای جواب کلاس دوم…………………………………………………………. 49

3-6-3- میدان الکتریکی برای جواب کلاس سوم………………………………………………………… 49

 

فصل چهارم: خلاصه و نتیجه­گیری……………………………………………………………………………………. 51

 

فهرست منابع……………………………………………………………………………………………………………………………. 53

فهرست شکل ها

شکل 1-1 کرمچاله ویلر……………………………………………………………………………………………………………….. 5

شکل (3-1): نمودار  بر حسب  برای …………………………………….. 42

شکل (3-2): نمودار  برحسب  برای ………………………………………. 42

شکل (3-3): نمودار  برحسب  برای ………………………………… 43

شکل (3-4): نمودار  برحسب  برای ……………………………………………………….. 44

شکل (3-5): نمودار  برحسب  برای ……………………………………………………… 44

چکیده

این پایان­نامه به طور کلی شامل دو قسمت است. در قسمت اول تاریخچه­ی مختصری از معادلات کرمچاله­ها و این­که چگونه چنین ساختارهایی در دنیای فیزیک مطرح شده است، آورده شده است. این مباحث در
فصل­های اول و دوم می­باشد که تدریجاً از معادلات اولیه­ی کرمچاله تا معادلات کرمچاله در سطوح بالاتر نوشته شده است. همچنین در مورد تفکرات فلسفی که بعد از به وجود آمدن ساختارهای کرمچاله­ای در دنیای فیزیک مطرح شد، بحث شده است. در قسمت دوم پایان­نامه که از فصل سوم شروع می­شود، در مورد چگونگی به دست آوردن معادلات کرمچاله­ای برای گرانش اینشتین – ماکسول – دایلتون گفته می­شود. معادلات کرمچاله برای سه دسته از جواب­ها منطبق بر سه نوع پتانسیل مختلف به دست آمده است. سپس در تناقض و یا مورد تأیید بودن این ساختارها با شرایط انرژی کیهان بررسی شده است. بار الکتریکی کرمچاله نیز به خاطر جمله­ی مربوط به ماکسول در کنش این گرانش در پیش­زمینه­ی کیهان درحال انبساط نیز محاسبه شده است. شعاع گلوگاه کرمچاله و عبورپذیربودن اطلاعات از این ساختارها نیز مورد بحث و بررسی قرار گرفته است.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 89
|
امتیاز مطلب : 3
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه شیراز

دانشکده علوم

پایان نامه ی کارشناسی ارشد در رشته­ ی فیزیک

گرایش اتمی( مولکولی)

عنوان:

طراحی لیزر فیبری رامان با بازده بالا در محدوده طول موجی 2-1 میکرومتر

استاد راهنما:

دکتر عبدالناصر ذاکری

 

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل اول:  مقدمه

1-1-فیبرها……………………………………………………………………………………………………………………………… 6

1-2- مواد و ساخت………………………………………………………………………………………………………………… 7

1-2-1 روش ته نشینی بخار تصحیح یافته(MCVD)…………………………………………………… 9

1-3- تلفات فیبر……………………………………………………………………………………………………………………. 10

1-3-1جذب ماده…………………………………………………………………………………………………………….. 11

1-3-2 پراکندگی رایلی…………………………………………………………………………………………………… 13

1-4-نقص های موجبری………………………………………………………………………………………………………. 14

1-5 -غیر خطی بودن فیبرها……………………………………………………………………………………………….. 14

1-5-1 ضریب شکست غیر خطی………………………………………………………………………………….. 15

1-6-پراکندگی رامان ……………………………………………………………………………………………………………. 16

1-6-1 پراکندگی خود به خودی رامان………………………………………………………………………….. 16

1-6-2 پراکندگی القایی رامان………………………………………………………………………………………… 17

 

فصل دوم:

پراکندگی رامان در فیبرهای نوری

2-1 پراکندگی القایی رامان در فیبرها…………………………………………………………………………………. 22

2-1- 1طیف بهره رامان………………………………………………………………………………………………….. 22

2-1-2 آستانه رامان………………………………………………………………………………………………………… 25

2-1-3-تولید مولفه استوکس در اثر پراکندگی رامان با یک بار عبور…………………………. 26

2-1-4 لیزرهای فیبری رامان…………………………………………………………………………………………. 28

2-2 صفحات براگ فیبری…………………………………………………………………………………………………….. 29

2-2-1-پراش براگ………………………………………………………………………………………………………….. 30

 

فصل سوم:لیزرهای فیبری آبشاری رامان

3-1 انواع لیزرهای رامان فیبری بر اساس ناخالصی های درون فیبر………………………………… 33

3-2 انواع لیزرهای رامان فیبری بر اساس توان………………………………………………………………….. 34

3-3 طرح کلی لیزر رامان فیبری ………………………………………………………………………………………… 35

3-4 انواع طراحی های لیزرهای فیبری رامان …………………………………………………………………… 38

3-4-1 لیزرهای فیبری رامان برای کاربردهای پزشکی………………………………………………… 38

3-4-2 لیزر رامان فیبری چند طول موجی برای کاربردهای حسگری دور برد………….. 39

3-4 -3 لیزر رامان فیبری دو بار گذار با کاربرد زیست پزشکی…………………………………… 44

 

فصل چهارم:حل معادلا ت مربوط به لیزرهای فیبری آبشاری رامان

به روش تحلیلی

4-1 شکل کلی لیزر فیبری آبشاری رامان…………………………………………………………………………… 48

4-1-1 دستگاه معادلات مربوط به توان موج های پمپ و مولفه های استوکس ………. 49

4-1-2 ضرایب بازتاب صفحات براگ……………………………………………………………………………… 50

4-1-3 اعمال تغییر متغیردر دستگاه معادلات ……………………………………………………………. 51

4-1-4 اعمال تقریب برای حل دستگاه معادلات بالا……………………………………………………. 54

4-2 الگوریتم تقریب اولیه…………………………………………………………………………………………………….. 56

4-3 پیاده سازی الگوریتم تقریب اولیه برای چیدمان لیزر پیشنهادی …………………………….. 60

4-3-1 پارامترهای مورد نیاز……………………………………………………………………………………………. 60

4-3-2 نتایج بدست آمده با استفاده از الگوریتم تقریب اولیه……………………………………… 60

4-4 مقایسه روش تقریب اولیه با داده های تجربی…………………………………………………………….. 60

 

فصل پنجم:حل معادلا ت مربوط به لیزرهای فیبری آبشاری رامان به روش عددی

5-1  حل گر عددی ode45…………………………………………………………………………………………………. 67

5-2 روش طیفی……………………………………………………………………………………………………………………. 70

5-2-1 روش طیفی فوریه……………………………………………………………………………………………….. 72

5-2-2 روش طیفی چبیشف………………………………………………………………………………………….. 75

5-3 حل دستگاه معادلات توان توسط روش طیفی فوریه…………………………………………………. 76

5-4 مقایسه روش های تقریب اولیه، حل گر عددی ode45 و طیفی چبیشف با سایر

روش های عددی به کار رفته در مقالات……………………………………………………………………………… 81

 

نتیجه گیری…………………………………………………………………………………………………………………………………. 84

پیشنهاد برای ادامه کار ………………………………………………………………………………………………………………. 86

 

فهرست منابع ………………………………………………………………………………………………………………………….. 87

فهرست جدول ها

جدول2-1 طول موج مولفه های استوکس مختلف تولید شده طی فرآیند SRS…………………. 27

جدول3-1 مقایسه ویژگی های لیزرهای رامان فیبری با چیدمان های مختلف…………………….. 39

جدول 4-1 پارامترهای مربوط به چیدمان لیزر شکل 4-1……………………………………………………… 60

جدول 4-2 پارامترهای مورد نیاز مربوط به چیدمان آزمایشگاهی لیزر فیبری رامان …………… 63

فهرست شکل ها

شکل 1-1 فیبر با ضریب درجه ای و مرحله ای ………………………………………………………………………. 7

شکل 1-2  دستگاهی که برای کشیدن فیبر استفاده می شود………………………………………………… 8

شکل 1-3  روش ته نشینی بخار تصحیح یافته را نشان می دهد……………………………………………. 9

شکل1-4 جذب بر حسب طول موج یک فیبر تک مد با قطر هسته 9.4 میکرومتر…………….. 11

شکل1-5تلفات و پاشندگی فیبرها و فیبر خشک که میزان یون OHدر آن بسیار

پایین است……………………………………………………………………………………………………………………………………. 13

شکل1-6پایستگی انرژی پراکندگی القایی رامان………………………………………………………………………. 17

شکل1-7توصیف مولکولی پراکندگی القایی رامان……………………………………………………………………. 18

شکل2-1 طیف بهره رامان برای سیلیکای فیوز شده در طول موج پمپ 1 میکرومتر………….. 22

شکل2-2 طیف بهره رامان به عنوان تابعی از جابجایی فرکانسی برای مقادیر مختلف

ناخالصی اکسید ژرمانیم………………………………………………………………………………………………………………. 23

شکل2-3 نقاطs1 تا s5 مولفه های استوکس همزمان تولید شده را با استفاده از توان

پالسی 1.06 میکرومتر نشان می دهند………………………………………………………………………………………. 27

شکل 2-4 شمای یک لیزر رامان کوک پذیر…………………………………………………………………………….. 28

شکل2-5 شمای یک صفحه فیبری براگ را نشان می دهد. نواحی تیره و روشن درون

هسته فیبر تغییرات دوره ای ضریب شکست را نشان می دهند…………………………………………….. 30

شکل3-1 طیف بهره رامان برای فیبرهای سیلیکات فسفر و سیلیکات ژرمانیم…………………….. 33

شکل3-2 شمای کلی یک لیزر فیبری رامان…………………………………………………………………………….. 35

شکل3-3 شمای کلی یک لیزر فیبری آبشاری رامان……………………………………………………………….. 36

شکل3-4 شمای لیزر فیبری رامان ترکیبی………………………………………………………………………………. 38

شکل3-5 چیدمان آزمایشی لیزر فیبری رامان چند طول موجی که از چندین صفحه

براگ جابجایی فاز برای سیستم حسگری دوربردتشکیل شده است……………………………………… 40

شکل3-6(a) طیف بازتاب اندازه گیری شده یک صفحه براگ با جابجایی فاز

و شکل3-6 (b) طیف بازتاب اندازه گیری شده یک صفحه براگ

تنظیم پذیر را نشان می دهد……………………………………………………………………………………………………. 41

شکل3-7 طیف خروجی اندازه گیری شده لیزر رامان چند طول موجی با یک صفحه

براگ جابجایی فاز……………………………………………………………………………………………………………………….. 42

شکل3-8 جابجایی طول موج لیزر به عنوان تابعی از دما. حساسیت دمایی هر دو طول

موج یکسان است و حدود  است……………………………………………………………………………….. 43

شکل3-9 جابجایی طول موج لیزر به عنوان تابعی از فشار……………………………………………………… 43

شکل3-10 چیدمان لیزر رامان فیبری دوبار عبور تنظیم پذیر پرتوان……………………………………. 45

شکل 3-11 طیف مولفه های استوکس آبشاری در ناحیه 527-360 نانومتر تولید شده

در نتیجه گسیل پمپ لیزر یک بار عبور از فیبر رامان…………………………………………………………….. 45

شکل 3-12 مولفه های استوکس آبشاری در ناحیه1.01-0.54 میکرومتر تولید شده در

نتیجه گسیل پمپ لیزر یک بار عبور از فیبر رامان…………………………………………………………………… 46

شکل4-1 لیزر رامان فیبری سیلیکات فسفر با تولید دو مولفه استوکس……………………………….. 48

شکل 4-2 بازتاب پرتو از صفحه براگ0 را نشان می دهد. …………………………………………………….. 50

شکل 4-3 بازتاب صفحات براگ از جفت صفحات 1و4 را نشان می دهد. نوری

که درون کاواک تشکیل شده از صفحات 1 و 4 رفت و برگشت می کند

در هر بار عبور از 4 نقطه اتصال و 2 صفحه براگ عبور می کند……………………………………………. 50

شکل4-4  بازتاب صفحات براگ از جفت صفحات2و3 را نشان می دهد. …………………………….. 51

شکل 4-5 چیدمان آزمایشگاهی لیزرآبشاری فیبری رامان …………………………………………………….. 63

شکل5-1 شبکه نقاط گسسته روی بازه تناوبی ………………………………………………………. 72

شکل5-2 نقاط شبکه چبیشف روی بازه ………………………………………………………………….. 75

شکل5-3 لیزر رامان فیبری سیلیکات فسفر با تولید دو استوکس………………………………………….. 81

فهرست نمودارها

نمودار4-1 توان های رفت و برگشت موج های پمپ و مولفه های استوکس رسم شده

توسط نرم افزار مطلب با استفاده از روش تقریب اولیه…………………………………………………………… 61

نمودار4-2 توان های رفت و برگشت موج های پمپ و مولفه های استوکس رسم شده

توسط نرم افزار مطلب در مقایسه با یکدیگر………………………………………………………………………………. 62

نمودار4-3 توان خروجی مولفه دوم استوکس  بر حسب توان ورودی پمپ

نقاط مثلثی، داده های تجربی، خط چین نمودارعددی با ضریب عبور1درصد و خط صاف

نمودار عددی با ضریب عبور 15 درصد را نشان می دهد………………………………………………………… 64

نمودار4-4 توان خروجی مولفه دوم استوکس  بر حسب توان ورودی پمپ

با استفاده از روش تقریب اولیه…………………………………………………………………………………………………… 65

نمودار5-1 توان های رفت و برگشت موج های پمپ و مولفه های استوکس رسم شده

توسط نرم افزار مطلب با استفاده از حل گر عددی ode45……………………………………………………… 68

نمودار5-2 توان های رفت و برگشت موج های پمپ و مولفه های استوکس رسم شده

توسط نرم افزار مطلببا استفاده از حل گر عددی ode45 در مقایسه با یکدیگر ………………….. 69

نمودار5-3 توان های رفت و برگشت موج های پمپ و مولفه های استوکس رسم شده

توسط نرم افزار مطلببا روش تقریب اولیه به صورت خط و با استفاده از حل گر عددی

ode45به صورت ستاره……………………………………………………………………………………………………………….. 7

نمودار5-4 توان های رفت و برگشت موج های پمپ و مولفه های استوکس رسم شده

توسط نرم افزار مطلب با روش طیفی چبیشف……………………………………………………………………….. 78

نمودار5-5 توان های رفت و برگشت موج های پمپ و استوکس ها رسم شده توسط

نرم افزار مطلب با روش طیفی چبیشف به صورت خط صاف در مقایسه با روش

حل گر عددیode45 به صورت ستاره…………………………………………………………………………………….. 78

نمودار5-6 توان های رفت و برگشت موج های پمپ و مولفه های استوکس رسم شده

توسط نرم افزار مطلب با روش طیفی چبیشف به صورت علامت مثبت در مقایسه با

روش تقریب اولیه به صورت خطوط صاف سیاه رنگ………………………………………………………………. 80

نمودار 5-7 توان پمپ و مولفه های استوکس اول و دوم در مسیر رفت و برگشت………………. 8

چکیده

در دهه های اخیر لیزرهای فیبری آبشاری رامان به خاطر بازه فرکانسی وسیع و کاربردهای متنوعی که دارند بسیار مورد توجه قرار گرفته اند.

در این بررسی چیدمان آزمایشگاهی لیزر فیبری رامان را در نظر گرفته و معادلات مربوط بهتوان پرتوهای پمپ و مولفه های استوکس اول و دوم را می نویسیم.سپس این معادلات را که به صورت دستگاه معادلات دیفرانسیل غیر خطی مرتبه اول با شرایط مرزی در ابتدا و انتهای فیبر هستند،با اعمال تغییر متغیر و با استفاده از الگوریتم تقریب اولیه به صورت دستگاه معادلات خطی با شرایط اولیه در آورده و با روش تحلیلی و تهیه برنامه آن در نرم افزار متلب، حل نموده ونمودارتوانپرتوهای پمپ و مولفه های استوکس رفت و برگشت را برحسب طول فیبر رسم می کنیم.

در مرحله بعد معادلات مربوطه را به دو روش عددی حل گرode45 و روش طیفی با استفاده از نرم افزار متلب حل نموده و نمودار توان پرتوهای پمپ و مولفه های استوکس رفت و برگشت را برحسب طول فیبر با این دو روش رسم می نماییم.

در نهایت می توان دید که نمودارهای رسم شده توان پمپ و مولفه دوم استوکس برحسب طول فیبر به روش تحلیلی، با نمودارهای مشابه به روش های عددی ode45 و روش طیفی بر هم منطبقند و نمودار رسم شده توان مولفه اول استوکسبه روش عددی ode45 با نمودار های مشابه با دو روش دیگر کاملا منطبق نیستند اما توافق خوبی با هم دارند.

هم چنین نمودار توان پمپ و مولفه های اول و دوم استوکس را که از طریق داده های تجربی مربوط به چیدمان آزمایشگاهی بدست آمده اند، با نمودارهای مشابه بدست آمده از روش های عددی مقایسه می نماییم. دیده می شود که نمودار تجربی نیز با نمودارهای رسم شده توسط روش های تحلیلی و عددی توافق نسبتا خوبی نشان می دهند. به گونه ای که برای مثال توان پمپ پیشرو در نمودار تجربی از مقدار حدود 5/4 واتدر ابتدای فیبر به مقدار 1 وات در انتهای فیبر می رسد. در حالی که سایر نمودارها متفقا این مقدار را  حدود  5/4 وات در ابتدای فیبر و 5/0 وات در انتهای فیبر پیش بینی می کنند.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 96
|
امتیاز مطلب : 3
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه مازندران

دانشکده علوم پایه 

 گروه فیزیک هسته ­ای

پایان نامه دوره کارشناسی ارشد در رشته فیزیک هسته­ای

 

 

موضوع:

مطالعه چگالی تراز هسته­ای با استفاده از مدل لایه­ای

 

استاد راهنما:

دکتر محمد رضا پهلوانی

استاد مشاور:

دکتر امید ناصر قدسی

  

شهریور 92

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده:

چگالی تراز هسته­ای به عنوان یکی از پارامترهای مهم در بررسی ساختار هسته و برهمکنش­های هسته­ای محسوب می­شود. مدل BSFGM یکی از مدل­های شناخته شده چگالی تراز هسته به حساب می­آید و دربرگیرنده جابجایی انرژی برانگیختگی و پارامتر چگالی تراز می­باشد. در این مطالعه، پارامتر چگالی تراز با استفاده از مدل نیمه کلاسیکی و با تعیین چگالی تراز تک ذره­ای در انرژی فرمی به ازای انرژی پتانسیل هسته­ای میدان متوسط برای پتانسیل های چاه مربعی متناهی، نوسانگر هماهنگ و وودز-ساکسون بصورت مستقیم محاسبه شده است. وابستگی این پارامتر به انرژی نیز بررسی شده است. از مقایسه نتایج مستقیم بدست آمده با مقادیر برازش شده برای پارامتر چگالی تراز، همخوانی خوبی مشاهده می­شود.

پارامتر قطع اسپین نیز محاسبه شده است و وابستگی این پارامتر به دمای هسته و انرژی مورد بررسی قرار گرفته است. پارامتر دیگر  نیز از طریق روش برازش محاسبه شده است. در این روش اثر پتانسیل کولنی روی چگالی تراز تک ذره­ای، پارامتر چگالی تراز و پارامتر قطع اسپین مورد بررسی قرار گرفته است.

 

 

واژه­های کلیدی:

چگالی تراز هسته­ای، چگالی تراز تک ذره­ای، مدل نیمه کلاسیکی، مدل جابجایی گاز فرمی، انرژی فرمی

 

 

 

 

 

فهرست مطالب

عنوان                                                                                                                 صفحه

فصل اول   1

مقدمه. 2

1-1 مدل های هسته­ای.. 5

1- 2 مدل قطره مایع. 5

1-3 مدل لایه­ای.. 6

فصل دوم  8

چگالی تراز تک ذره­ای.. 9

2-1 روش جابجایی فاز. 11

2-2 روش تابع گرین.. 14

2-3 روش هموار. 15

2-4 روش نیمه کلاسیکی.. 8

فصل سوم  26

3-1 چگالی تراز هسته­ای و پارامترهای وابسته به آن.. 27

3-2 مدل گاز فرمی (FGM). 33

3-3 مدل جابجایی گاز فرمی (BSFGM). 35

3-4 مدل جابجایی گاز فرمی با a وابسته به انرژی (BSFGM-ED). 37

3-5 مدل دمای ثابت (CTM). 38

3-6 مدل ابر شاره (GSM). 39

3-7 مشاهده پذیرها 40

3-8 روش­های برازش…. 41

3-9 اثرات تجمعی در چگالی تراز. 51

فصل چهارم  55

نتیجه گیری.. 56

 

فهرست شکل­ها

عنوان                                                                                                                         صفحه

شکل 2-1 نمودار چگالی تراز تک ذره­ای با استفاده از روش نیمه کلاسیکی برای چاه پتانسل مربعی.. 20

شکل 2-2 نمودار پتانسیل نوسانگر هماهنگ…. 21

شکل 2-3 نمودار پتانسیل وودز-ساکسون. 22

شکل 2-4 نمودار چگالی تراز تک ذره­ای برحسب انرژی برای پتانسیل وودز-ساکسون. 23

شکل 2-5 نمودار تعداد حالتهای با انرژی کمتر از E بر حسب انرژی.. 25

شکل 3-1 صحیح لایه­ای برحسب عدد جرمی.. 29

شکل 3-2 پارامتر قطع اسپین برحسب عدد جرمی 32

شکل 3-3 تصحیح لایه­ای نوترونی برحسب N عدد نوترونی 36

شکل 3-4 تصحیح لایه­ای پروتونی برحسب Z عدد پروتونی 36

شکل 3-5 پارامترهای چگالی تراز پدیده شناختی برای سه مدل موردنظر. 46

شکل 3-6 مقادیر محاسبه شده و برازش شده پارامترهای مدل جابجایی گاز فرمی.. 50

شکل 3-7 مقادیر محاسبه شده و برازش شده پارامترهای مدل جابجایی گاز فرمی وابسته به انرژی.. 50

شکل 3-8 مقادیرمحاسبه شده و برازش شده پارامترهای مدل دمای ثابت… 51

شکل 4-1 تغییرات چگالی تراز تک ذره­ای نوترونی بر حسب انرژی.. 58

شکل 4-2 تغییرات چگالی تراز تک ذره­ای نوترونی برحسب انرژی.. 59

شکل 4-3 چگالی تراز تک ذره­ای نوترونی برحسب انرژی.. 60

شکل 4-4 چگالی تراز تک ذره­ای نوترونی با اعمال پتانسیل وودز-ساکسون برحسب عدد جرمی.. 63

شکل 4-5 چگالی تراز تک ذره­ای پروتونی با اعمال پتانسیل وودز-ساکسون برحسب عدد جرمی.. 63

شکل 4-6 چگالی تراز تک ذره­ای نوترونی با اعمال پتانسیل نوسانگر هماهنگ برحسب عدد جرمی.. 64

شکل 4-7 چگالی تراز تک ذره­ای پروتونی با اعمال پتانسیل نوسانگر هماهنگ برحسب عدد جرمی.. 64

شکل 4-8 چگالی تراز تک ذره­ای پروتونی برحسب عدد جرمی.. 65

شکل 4-9 نمودار پارامتر چگالی تراز با استفاده از پتانسیل وودز-ساکسون و تاثیر پتانسیل کولنی.. 68

شکل 4-10 نمودار پارامتر چگالی تراز با استفاده از پتانسیل نوسانگر هماهنگ و تاثیر پتانسیل کولنی.. 69

شکل 4-11 نمودار پارامتر قطع اسپین و تاثیر پتانسیل کولنی روی این پارامتر. 72

شکل 4-12 نمودار پارامتر قطع اسپین برحسب دمای هسته. 73

شکل 4-13 نمودار پارامتر قطع اسپین برحسب انرژی برانگیختگی.. 74

 

 

 

 

 

 

 

 

 

 

فهرست جدول­ها

عنوان                                                                                                                         صفحه

جدول 3- 1 پارامترهای برازش شده برای سه مدل دمای ثابت، جابجایی گاز فرمی و مدل جابجایی گاز فرمی وابسته به انرژی برای تعدادی هسته  44

جدول 4- 1 چگالی تراز تک ذره­ای پروتونی و نوترونی در انرژی فرمی برای هسته­های مختلف مربوط به  پتانسیل وودز-ساکسون بدون در نظر گرفتن پتانسیل کولنی و با اعمال آن………………………………………………………………………………………………………56

جدول 4- 2 چگالی تراز تک ذره­ای پروتونی و نوترونی در انرژی فرمی برای هسته­های مختلف مربوط به پتانسیل نوسانگر هماهنگ بدون در نظر گرفتن پتانسیل کولنی و با اعمال آن.. 62

جدول 4- 3 پارامتر چگالی تراز a با اعمال پتانسیل وودز-ساکسون برای تعدادی از هسته­های سبک، نیمه سنگین و سنگین، با در نظر گرفتن پتانسیل کولنی و بدون پتانسیل کولنی.. 66

جدول 4- 4 پارامتر چگالی تراز a با اعمال پتانسیل نوسانگر هماهنگ برای تعدادی از هسته­های سبک، نیمه سنگین و سنگین، با در نظر گرفتن پتانسیل کولنی و بدون پتانسیل کولنی.. 67

جدول 4- 5 پارامتر چگالی قطع اسپین با اعمال پتانسیل وودز-ساکسون برای تعدادی از هسته­های سبک، نیمه سنگین و سنگین، با در نظر گرفتن پتانسیل کولنی و بدون پتانسیل کولنی.. 67

جدول 4- 6 پارامتر چگالی قطع اسپین با اعمال پتانسیل نوسانگر هماهنگ برای تعدادی از هسته­های سبک، نیمه سنگین و سنگین، با در نظر گرفتن پتانسیل کولنی و بدون پتانسیل کولنی.. 71

جدول 4- 7 مقادیر برازش شده برای جابجایی انرژی برانگیختگی و ثابت η. 71

 

 

فصل اول

مقدمه

 

 

مقدمه

 

چگالی تراز تک ذره­ای،  یکی از عناصر مهم در بررسی ساختار هسته می­باشد، زیرا در تعیین چگالی تراز هسته،  نقش مهمی دارد. در بررسی چگالی تراز تک ذره­ای از روش­های مختلفی استفاده شده­است که از آن جمله به روش­های مکانیک کوانتومی از قبیل روش تابع گرین، روش اسموث[1] و روش جابجایی فاز می­توان اشاره کرد، که در این روش­ها بازه انرژی به دو ناحیه تقسیم می­شود، ناحیه انرژی پیوسته و نواحی انرژی مقید که بیشتر تمرکز روی نواحی پیوسته است.

یکی دیگر از روش­ها در بررسی چگالی تراز تک­ذره­ای روش نیمه کلاسیکی می­باشد که در این روش از میدان متوسط برای محاسبات استفاده شده است، که میدان متوسط نوترون شامل جملات پتانسیل هسته­ای و برهمکنش اسپین مدار و برای پروتون علاوه بر این جملات، پتانسیل کولنی را نیز دربرمی­گیرد. تاکنون برای محاسبه چگالی تراز تک ذره­ای با استفاده از روش نیمه کلاسیکی پتانسیل­های مختلفی برای هسته­های کروی و تغییر شکل یافته پیشنهاد شده است که از جمله آنها به پتانسیل چاه مربعی متناهی و نامتناهی، پتانسیل نوسانگر هماهنگ و پتانسیل وودز-ساکسون[2] می­توان اشاره کرد. در روش محاسبه مستقیم پارامتر چگالی تراز با استفاده از این روش، انتخاب پتانسیل میدان میانگین برای بدست آوردن چگالی تراز تک ذره­ای   و مقدار آن در انرژی فرمی نقش تعیین کننده­ای دارد[1].

انرژی فرمی بصورت انرژی بالاترین حالت تک ذره­ای پرشده در حالت پایه هسته تعریف می­شود. مقدار انرژی فرمی برای پروتون و نوترون متفاوت است[2].

در هسته­های سنگین به دلیل نزدیک شدن ترازها به همدیگر و همپوشانی­های آنها تمایز بین ترازها سخت می­باشد و با افزایش انرژی، ترازها بیشتر بهم نزدیک می­شوند. به همین دلیل چگالی تراز برای هسته­های سنگین دارای اهمیت قابل توجهی است. چگالی تراز یکی از پارامترهای مهم ساختار هسته به حساب می­آید که با استفاده از آن سایر پارامترهای ترمودینامیکی هسته از قبیل دما، آنتروپی، فشار و ظرفیت گرمایی را می­توان بدست آورد[3,4].

بطورکلی برای محاسبه چگالی تراز از دو روش مستقیم وغیر مستقیم استفاده می­شود. در روش غیرمستقیم با محاسبه آنتروپی و تابع پارش هسته و با استفاده از رابطه بین آنتروپی و چگالی تراز هسته­ای، چگالی تراز محاسبه می­شود. به عنوان مثال به مدل­های آماری BCS [3] ، SMMC [4] و SPA+RPA [5] می­توان اشاره کرد[5-7].

در محاسبه چگالی تراز بطور مستقیم از روش­های آماری که به صورت تئوری ارائه می­شوند استفاده می­شود. به عنوان مثال به مدل­های آماری CTM [6] ، FGM [7] ، BSFGM [8] و GSM [9] می توان اشاره کرد. در این مدل­ها پارامتر چگالی تراز بطور تئوری و نیمه تجربی محاسبه می­شود. در بسیاری از مطالعات مربوط به محاسبه برهمکنش­های هسته­ای، فرمول­های تحلیلی مربوط به چگالی تراز ترجیح داده می­شوند[3,8-10].

در این مدل­ها پارامترهای چگالی تراز بطور تئوری و نیمه تجربی محاسبه می­شوند. در بسیاری از مطالعات مربوط به محاسبه برهمکنش­های هسته­ای، فرمول­های تحلیلی مربوط به چگالی تراز ارجعیت دارند.

در مدل دمای ثابت،CTM  بازه انرژی به دو بخش تقسیم می­شود که در بخش انرژی­های پایین از ثابت بودن دما می­توان استفاده کرد و در انرژی­های بالا مدل گاز فرمی مورد استفاده قرار می­گیرد. مسئله اصلی در این مدل ایجاد ارتباط بین نواحی کم انرژی و نواحی انرژی بالاست. این مدل پدیده­شناختی[10] براساس فرمول بت[11]  که در آن برهمکنش­های هسته­ای لحاظ نمی­شود، بنا شده است[11].

ساده­ترین بیان تحلیلی برای بررسی چگالی تراز مدل گاز فرمی است که در آن هسته­ها بدون برهمکنش در نظر گرفته شده واز اثرات تجمعی صرفنظر می­شود. مدل  BSFGMبا اعمال برخی اصلاحات در مدل گاز فرمی و با درنظرگرفتن جفت شدگی­های نوکلئونی در بر همکنش­های هسته­ای، ارائه شده است، این مدل در همه­ی انرژی­ها برای بررسی چگالی تراز مورد استفاده قرار می­گیرد.

در مدل BSFGM چگالی تراز هسته­ای دارای دو پارامتر چگالی تراز تک ذره­ای و انرژی جابجایی برانگیختگی است. معمولا این پارامترها به عنوان پارامترهای قابل تنظیم از طریق برازش داده­های تجربی تعیین می­شوند. اگرچه برای محاسبه پارامتر چگالی تراز، به جز برازش از مدل­های مختلف هسته­ای مثل مدل قطره مایع، مدل لایه­ای و رابطه نیمه تجربی نیز می­توان استفاده کرد و این پارامتر را بطور مستقیم محاسبه نمود.

 

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 104
|
امتیاز مطلب : 2
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد علوم وتحقیقات

دانشکده فنی و مهندسی،گروه مهندسی هسته ای

پایان نامه برای دریافت درجه کارشناسی ارشد در رشته مهندسی هسته ای (M.Sc)

گرایش: راکتور

عنوان:

ارزیابی دینامیکی قابلیت اطمینان دیزل ژنراتور های نیروگاه هسته ای بوشهر

 اساتید راهنما:

دکتر محمد پورگل محمد

دکتر کامران سپانلو

استاد مشاور:

دکتر مسعود منصوری

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

 عنوان                                                                                                شماره صفحه               

فصل اول: ارزیابی قابلیت اطمینان

بخش اول : کلیات

۱-۱-۱- موضوع مهندسی قابلیت اطمینان……………………………………………………………..3

۱-۱-۲- طبقه بندی انواع سیستم…………………………………………………………………..3

۱-۱-۳- کیفیت………………………………………………………………………………………………….6

۱-۱-۴- اهداف و کاربرد های قابلیت اطمینان…………………………………………………………7         

بخش دوم : تحلیل و مدلسازی خرابی

۱-۲-۱- سازوکارهای خرابی………………………………………………………………………..7

۱-۲-۲- انواع خرابی……………………………………………………………………..7

۱-۲-۳-  توزیع های احتمالاتی……………………………………………………………….11

۱-۲-۳-۱- توزیع دوتایی…………………………………………………………………14

۱-۲-۳-۲- توزیع پواسون………………………………………………………14

۱-۲-۳-۳-  توزیع گوسی یا نرمال………………………………………..15

۱-۲-۳-۴-  توزیع لاگ نرمال……………………………………………………16

۱-۲-۳-۵- توزیع نمایی……………………………………………………….17

۱-۲-۳-۶- توزیع Weibull………………………………………………………..19

بخش سوم : تحلیل قابلیت اطمینان سیستم های بدون تعمیر

۱-۳-۱- قابلیت اطمینان سیستم های ساده………………………..21

۱-۳-۲- تحلیل قابلیت اطمینان سیستم های پیچیده……………………………….26

بخش چهارم : تحلیل قابلیت اطمینان سیستم های با تعمیر 

۱-۴-۱- سیستم قابل تعمیر………………………………..28

بخش پنجم : فرایند مطالعات ارزیابی احتمالاتی ایمنی

۱-۵-۱- ارزیابی احتمالاتی ایمنی……………………………………………………….32

۱-۵-۲- تحلیل رویدادهای آغازگر…………………………………….33

۱-۵-۳- تحلیل روند گسترش حوادث……………………………………………….34

۱-۵-۴- تحلیل سیستم ها………………………………………………………………34

۱-۵-۵- تحلیل قابلیت اطمینان انسانی……………………………………………..35

۱-۵-۶- داده های مورد نیاز برای تحلیل PSA ………………………………….35

۱-۵-۷- پایگاه داده های عمومی………………………………………36

۱-۵-۸- تعریف حالات خرابی و مرز قطعات……………………………37

۱-۵-۹- انتخاب مدل و پارامتر قابلیت اطمینان………………………..38

 ۱-۵-۱۰- تحلیل کمی……………………………………….42

۱-۵-۱۱- تحلیل حساسیت ، تحلیل عدم قطعیت و تحلیل اهمیت………………………..43

فصل دوم:  PRA/DPRA و نقش سناریو ها در ارزیابی ریسک

۲-۱ ارزیابی احتمالاتی ریسک……………………………………………..47

۲-۲- محدودیت های روش PRA کلاسیک…………………………………49

۲-۳- Dynamic PRA…………………………………………………………………50

۲-۴- بررسی روش های مختلف DPRA با تاکید بر تولید سناریو / مدل سازی……………………..51

2-۴-۱ درخت خطای دینامیک………………………………..52

فصل سوم : آنالیز قابلیت اطمینان ایستگاه دیزل ژنراتور اضطراری

بخش اول: کلیات

۳-۱- خصوصیات و شرح مختصری از خرابی ایستگاه دیزل ژنراتور اضطراری…………………..55

بخش دوم : دیزل ژنراتور

۳-۲- دیزل ژنراتور………………………………………56

۳-۲-۱-  توصیف سیستم…………………………………………56

۳-۲-۱-۱- هدف سیستم…………………………………..56

۳-۲-۱-۲-  شرح مختصری از سیستم……………………………56

۳-۲-۱-۲-۱- شرح مختصری از فلوچارت…………………56

۳-۲-۱-۲-۲- قطعات………………………………………56

۳-۲-۱-۳-  کنترل و نظارت بر سیستم…………………………………….57

۳-۲-۱-۴-  سیستم های پشتیبانی……………………………….57

۳-۲-۱-۵- عملکرد در شرایط کارکرد نرمال………………………….57

۳-۲-۱-۶- عملکرد سیستم در شرایط اضطراری…………………………..57

۳-۲-۱-۷- تست های دوره ای قطعات……………………………………………….58 

۳-۲-۱-۸- رویه تعمیرات برنامه ریزی شده و نشده…………………………58

۳-۲-۲- مدل کردن سیستم……………………………………..59

۳-۲-۲-۱-فرضیات و محدودیت ها…………………………………………..59 

۳-۲-۲-۲- بیان خرابی سیستم………………………………….59

۳-۲-۲-۳- آنالیز علت های خرابی و عواقب آنها……………………..59

۳-۲-۲-۴- آنالیز حالت های غیر عملی…………………………60 

۳-۲-۲-۵- آنالیز اشتباهات پرسنل……………………………60

بخش سوم : سیستم مخزن نگهداری و سوخت رسانی دیزل ژنراتورها

۳-۳- سیستم مخزن نگهداری و سوخت رسانی دیزل ژنراتورها…………………………..61

۳۳۱– شرح سیستم…………………………………….61

۳۳۱۱– هدف از سیستم……………………….61

۳۳-1-2- شرح مختصری از سیستم………………………………61

۳۳۱-۲-۱- شرح مختصری از فلوچارت……………………..61

۳-۳-۱-۲-۲- تجهیزات………………………………………………63

۳-۳-۱-۳- کنترل و نظارت بر سیستم……………………64

۳-۳-۱-۴- سیستم های پشتیبانی………………………………….64

۳-۳-۱-۵- عملکرد در شرایط کارکرد نرمال……………………..65

۳-۳-۱-۶- عملکرد سیستم در شرایط اضطراری……………………….65

۳-۳-۱-۷- تست های دوره ای قطعات………………………..66

۳-۳-۱-۸- رویه های تعمیرات برنامه ریزی شده و برنامه ریزی نشده (ناخواسته)…………………66

۳-۳-۲- مدل کردن سیستم…………………………….67

۳-۳-۲-۱- فرضیات و محدودیت ها…………………………….67

۳-۳-۲-2- بیان خرابی سیستم…………………………………69

۳-۳-۲-۳- آنالیز علت های خرابی و عواقب آنها………………69

۳-۳-۲-۴- آنالیز حالت های بی تأثیر………………………………70

۳-۳-۲-۵- آنالیز اشتباهات پرسنل………………70

بخش چهارم: سیستم روغن کاری دیزل ژنراتور

۳-۴- سیستم روغن کاری دیزل ژنراتور…………………………………70

۳-۴-۱- شرح سیستم……………………………………………………………70

۳-۴-۱-۱- هدف از سیستم……………………………………….70

۳-۴-۱-۲- شرح مختصری از سیست………………………71

۳-۴-۱-۲-۱- شرح مختصری از فلوچارت…………………………..71

۳-۴-۱-۲-۲- تجهیزات………………………………………….73

۳-۴-۱-۳- کنترل و نظارت بر سیستم……………………74

۳-۴-۱-۴- سسیستم های پشتیبانی………………………….74

۳-۴-۱-۵- عملکرد در شرایط کارکرد نرمال…………75

۳-۴-۱-۶- عملکرد سیستم در شرایط اضطراری……..76

۳-۴-۱-۷-  تست های دوره ای قطعات…………………76

۳-۴-۱-۸- رویه های تعمیرات برنامه ریزی شده و برنامه ریزی نشده (ناخواسته)……………..77

۳-۴-۲- مدل کردن سیستم……………………………………………………78

۳-۴-۲-۱- فرضیات و محدودیت ها…………………….78

۳-۴-۲-۲- بیان خرابی سیستم……………………….80

۳-۴-۲-۳- آنالیز علت های خرابی و عواقب آنها…………80

۳-۴-۲-۴- آنالیز حالت های بی تأثیر……………………..82

۳-۴-۲-۵- آنالیز اشتباهات پرسنل…………………………82

بخش پنجم: سیستم خنک کننده آبی دیزل ژنراتور    

۳-۵- سیستم خنک کننده آبی دیزل ژنراتور……………………82    

 ۳-۵-۱- شرح سیستم…………………………………………………82

۳-۵-۱-۱- هدف از سیستم………………………………………………….82 

۳-۵-۱-۲- شرح مختصری از سیستم……………………………..83

۳-۵-۱-۲-۱- شرح مختصری از فلوچارت………………………………83

۳-۵-۱-۲-۲- تجهیزات……………………………………………..85

۳-۵-۱-۳- کنترل و نظارت بر سیستم……………………………………….86

۳-۵-۱-۳- سیستم های پشتیبانی…………………………….86

۳-۵-۱-۵- عملکرد در شرایط کارکرد نرمال…………………87

۳-۵-۱-۶- عملکرد سیستم در شرایط اضطراری…………………………..88

۳-۵-۱-۷- تست های دوره ای قطعات…………………..88 

۳-۵-۱-۸- رویه های تعمیرات برنامه ریزی شده و برنامه ریزی نشده (ناخواسته)…………89

۳-۵-۲- مدل کردن سیستم………………………..90

۳-۵-۲-۱- فرضیات و محدودیت ها…………………………90

۳-۵-۲-۲- بیان خرابی سیستم…………………………………………….91

۳-۵-۳-۳- آنالیز علت های خرابی و عواقب آنها………………………91

۳-۵-۲-۴- آنالیز حالت های بی تأثیر………………………….93

۳-۵-۲-۵- آنالیز اشتباهات پرسنل……………………………………93

بخش ششم : سیستم مکش هوا و اگزوز دیزل ژنراتور

۳-۶- سیستم مکش هوا و اگزوز دیزل ژنراتور……………………..93

۳-۶-۱- شرح سیستم………………………………….93

۳-۶-۱-۱- هدف از سیستم………………………93

۳-۶-۱-۲-شرح مختصری از سیستم…………………93

۳-۶-۱-۲-۱- شرح مختصری از فلوچارت……………93

۳-۶-۱-۲-۲- تجهیزات…………………………..95

۳-۶-۱-۳- کنترل و نظارت بر سیستم………………………….95

۳-۶-۱-۴- سیستم های پشتیبانی…………………….95

۳-۶-۱-۵- عملکرد در شرایط کارکرد نرمال…………………………………..95

۳-۶-۱-۶- عملکرد سیستم در شرایط اضطراری…………………95

۳-۶-۱-۷- تست های دوره ای قطعات…………………………….96

۳-۶-۱-۸- رویه های تعمیرات برنامه ریزی شده و برنامه ریزی نشده (ناخواسته)………….96

۳-۶-۲- مدل کردن سیستم………………………97

بخش هفتم : سیستم هوای راه انداز

۳-۷- سیستم هوای راه انداز…………………………………………97

۳-۷-۱- شرح سیستم………………………………………………..97

۳-۷-۱-۱- هدف از سیستم………………………97

۳-۷-۱-۲- شرح مختصری از سیستم……………………………………………97

۳-۷-۱-۲-۱- شرح مختصری از فلوچارت…………………………..97

۳-۷-۱-۲-۲- تجهیزات…………………………………………………………..99

۳-۷-۱-۳- کنترل و نظارت بر سیستم……………99

۳-۷-۱-۴- سسیستم های پشتیبانی………………………………99

۳-۷-۱-۵- عملکرد در شرایط کارکرد نرمال……………………….100

۳-۷-۱-۶- عملکرد سیستم در شرایط اضطراری……………………..100

۳-۷-۱-۷- تست های دوره ای قطعات……………………….101 

۳-۷-۱-۸- رویه های تعمیرات برنامه ریزی شده و برنامه ریزی نشده (ناخواسته)………………..101

۳-۷-۲- مدل کردن سیستم…………………………………..102

۳-۷-۲-۱- فرضیات و محدودیت ها…………………102

۳-۷-۲-۲- بیان خرابی سیستم………………………………103

۳-۷-۲-۳- آنالیز علت های خرابی و عواقب آنها………………………………..103

۳-۷-۲-۴- آنالیز حالت های بی تأثیر……………………..104

۳-۷-۲-۵- آنالیز اشتباهات پرسنل………………………104

بخش هشتم : سیستم خنک کننده هوای اتاق دیزل ژنراتور های اضطراری

۳-۸- سیستم خنک کننده هوای اتاق دیزل ژنراتور های اضطراری…………………….105

۳-۸-۱- شرح سیستم………………………………………105

۳-۸-۱-۱- عملکرد سیستم…………………………105

۳-۸-۱-۲- شرح مختصری از سیستم………………………..105

۳-۸-۱-۲-۱- شرح مختصری از فلوچارت……………………105

۳-۸-۱-۲-۲- تجهیزات…………………………..105

۳-۸-۱-۳- کنترل و نظارت بر سیستم………………………………..106

۳-۸-۱-۴- تجهیزات سیستم……………………………………106

۳-۸-۱-۵- عملکرد درشرایط کاری نرمال……………………………..107

۳-۸-۱-۶- عملکردسیستم در شرایط اضطرای…………..107

۳-۸-۱-۷- تست های دوره ای قطعات…………………………..107 

۳-۸-۱-۸- رویه های تعمیرات برنامه ریزی شده و برنامه ریزی نشده (ناخواسته)…………………….108

۳-۸-۲-مدل کردن سیستم…………………………….109

۳-۸-۲-۱- فرضیات و محدودیت ها…………………………….109

۳-۸-۲-۲- بیان خرابی سیستم………………………………………110

۳-۸-۲-۳- آنالیز علت های خرابی و عواقب آنها……………………..110

۳-۸-۲-۴- آنالیز حالت های بی تأثیر………………………..111

۳-۸-۲-۵- آنالیز اشتباهات پرسنل…………………………..112

فصل چهارم :ارزیابی قابلیت اطمینان و دسترسی سیستم

۴-۱- انواع داده های خرابی………………………………….113

۴-۲- مدت زمان کارکرد در نظر گرفته شده در محاسبات………………..113

۴-۳- طبقه بندی اجزاء سیستم دیزل ژنراتور اضطراری……………….115

۴-۴- تحلیل و ارزیابی سیستم دیزل ژنراتور اضطراری با استفاده از نرم افزار Blocksim9…………………115

۴ -۴ -۱  ویژگی های نرم افزار Blocksim9………………………………115

۴-۵- دیاگرام قابلیت اطمینان و درخت خطای زیر سیستم ها………..116

۴-۶- اندازه گیری اهمیت………………………………………127

۴-۷- ارزیابی قابلیت دسترسی سیستم دیزل ژنراتور اضطراری……………………128

۴-۷-۱- مفروضات…………………………………..132

۴-۸- فرآیند شبیه سازی مونت کارلو……………………139

۴-۸-۱- مزایا و معایب روش شبیه سازی………………………140

فصل پنجم: نتیجه گیری و پیشنهادات

نتایج :

ارزیابی قابلیت اطمینان……………………………..۱۶۱

شناسایی اجزای با اهمیت در سیستم ………………………………۱۶۱

اثر AGEING در محاسبات قابلیت دسترسی ………………………۱۶۳

متوسط زمان تا رخداد اولین خرابی در مقایسه با قابلیت دسترسی…………………………….۱۶۶

ارزشیابی پژوهش و اعتبار سنجی ……………………….۱۶۷

محاسبات مجموعه ۴ کاناله دیزل ژنراتور اضطراری…………………..۱۶۷

اهمیت و کاربرد پروژه صورت گرفته در محاسبات PRA………………….۱۶۹

پیشنهادات…………………………۱۷۰

منابع…………………………….۱۷۱

 چکیده

   در زمان بهره برداری عادی از یک نیروگاه هسته ای، سیستم برق اضطراری در حالت آماده به کار می باشد. به گونه ای که در صورت وقوع رخداد پیشامد آغازگری مانند قطع  برق خارجی نیروگاه، در عرض چند ثانیه باید به صورت خودکار راه اندازی شود. بنابراین، به منظور اطمینان از کار کرد دیزل ژنراتور در هنگام تقاضا، چگونگی انجام بازرسی، نگهداری و تعمیرات در این سیستم حائز اهمیت می باشد. از آنجا که دیزل ژنراتور ها مشخصات عملکردی خاصی دارند و در اثر فرسودگی (ageing) مشکلاتی را پیدا می کنند، لازم است تمهیداتی در طراحی آنها لحاظ گردد. ارزیابی قابلیت اطمینان کلاسیک به صورت گسترده در ایمنی نیروگاه های هسته ای به کار رفته است،اما بایستی در نظر داشت که بازرسی، تعویض و تعمیرات قطعات خراب شده  در طول فواصل زمانی بر رفتار دینامیکی دیزل ژنراتور ها موثر است که در نتیجه استفاده از نتایج ارزیابی کلاسیک با گذشت زمان با خطای بیشتری توام می گردد.

   در این پروژه، ارزیابی دینامیکی قابلیت اطمینان برای مدل کردن رفتار دینامیکی دیزل ژنراتور های اضطراری،  با به کار بردن روش مونت کارلو صورت گرفته است که نشان دهنده تاثیر فرسودگی بر روی مقدار قابلیت اطمینان و قابلیت دسترسی در مقایسه با نتایج ارزیابی کلاسیک می باشد.

   با به کار بردن دیاگرام بلوک قابلیت اطمینان دینامیکی و درخت خطای دینامیکی برای نشان دادن اثر فرسودگی بر روی مدل قابلیت اطمینان و به منظور سیاست نگهداری بهینه برای دستیابی به قابلیت دسترسی ماکزیمم برای سیستم دیزل ژنراتور های اضطراری نیروگاه هسته ای بوشهر پژوهش حاضر انجام شده است.

 کلید واژه ها: دیزل ژنراتور اضطراری  نیروگاه اتمی بوشهر، فرسودگی ، قابلیت اطمینان دینامیکی ،دیاگرام بلوک قابلیت اطمینان دینامیکی، درخت خطای دینامیکی، قابلیت دسترسی.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 126
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()
نوشته شده توسط : مدیر سایت

دانشگاه آزاد اسلامی

واحد تهران شمال

پایان نامه کارشناسی ارشد رشته فیزیک اتمی – مولکولی

موضوع:

الگوی هماهنگ دوم اپتیکی و بسامد مجموع پراکندگی از ذرات با شکل دلخواه

استاد راهنما:

دکتر محمد حسین مجلس آرا

استاد مشاور:

دکتر لاله فرهنگ متین

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

چکیده

مقدمه………………………………………………………………………………………………………………. 1

فصل اوّل: اپتیک غیرخطی

مقدمه………………………………………………………………………………………………………………. 3

تاریخچه…………………………………………………………………………………………………………… 3

1-1- ویژگی‌های محیط خطی………………………………………………………………………………. 4

1-2- ویژگی‌های محیط غیرخطی………………………………………………………………………….. 5

1-3- قطبیدگی محیط خطی و محیط غیرخطی………………………………………………………….. 5

1-4- برآورد ساده‌ای از اندازه کمیت پذیرفتاری……………………………………………………….. 11

1-5- تولید هماهنگ دوم…………………………………………………………………………………….. 12

1-6- تولید بسامد مجموع و بسامد تفاضل………………………………………………………………. 14

1-7- معادلات ماکسول در محیط‌های غیرخطی………………………………………………………… 15

فصل دوّم: مفهوم پذیرفتاری موثر در اپتیک غیرخطی

مقدمه…………………………………………………………………………………………………………….. 20

2-1- پذیرفتاری غیرخطی…………………………………………………………………………………… 20

2-2- پذیرفتاری غیرخطی در تولید بسامد مجموع…………………………………………………….. 23

2-3- پذیرفتاری غیرخطی در تولید هماهنگ دوم……………………………………………………… 23

2-4- پذیرفتاری موثر در پراکندگی اپتیک غیرخطی…………………………………………………… 24

2-5- ذرات ریز……………………………………………………………………………………………….. 28

2-6- اندیس ذرات همساز………………………………………………………………………………….. 31

2-7- پراکندگی………………………………………………………………………………………………… 34

2-8- ویژگی‌های پراکندگی خودبه‌خودی نور…………………………………………………………… 35

2-9- پراکندگی ریلی…………………………………………………………………………………………. 37

2-10- پراکندگی تصحیح شده …………………………………………………………………………….. 37

فصل سوم: نظریه  هماهنگ دوم اپتیکی و جمع فرکانس از ذرات با شکل دلخواه

مقدمه …………………………………………………………………………………………………………….. 40

3-1) مباحث نظری……………………………………………………………………………………………. 41

3-2- پراکندگی از ذرات با شکل دلخواه و سطح‌های ساده………………………………………….. 49

3-3- پراکندگی از ذرات بیضوی…………………………………………………………………………… 50

فصل چهارم: نتایج عددی

نتایج عددی …………………………………………………………………………………………………….. 58

نتیجه‌گیری ………………………………………………………………………………………………………. 62

پیوست الف) …………………………………………………………………………………………………… 63

پراکندگی اپتیک غیرخطی از ذرات کروی و استوانه‌ای ………………………………………………… 63

پیوست (ب) ……………………………………………………………………………………………………. 65

ذرات بیضی‌گون ……………………………………………………………………………………………….. 65

منابع و مآخذ …………………………………………………………………………………………………… 66

چکیده انگلیسی…………………………………………………………………………………………………. 67

چکیده:

مفهوم پذیرفتاری موثر در اپتیک غیرخطی بیان شده است و شدت پراکندگی تصحیح شده در این محیط نشان داده شده است و سپس یک ساختار تئوری برای تولید و پراکندگی هماهنگ دوم اپتیکی و بسامد مجموع نور از سطح ذرات با اشکال مختلف در دامنه‌ی محدودی از ضریب شکست‌های ثابت فراهم شده است. پراکندگی نور را می‌توان برای سطح‌ها همگن و همسانگرد با یک مجموعه متناهی از تابع‌های پراکندگی توصیف کرد قوانین انتخاب با توجه به این تابع‌ها وجود دارد. تابع‌های مربوط به سطوح انطباق‌پذیر بر تصویر آینه‌ای و غیرانطباق‌پذیر بر تصویر آینه‌ای مستقیماً با حجم و سطح در ارتباط هستند. سرانجام توابع صریحی برای ذرات بیضی گون نشان داده شده است و الگوی پراکندگی زاویه‌ای به عنوان تابعی برای جهت‌گیری ذره و یا هنگردی از ذرات نشان داده شده است.

مقدمه:

پدیده‌های بسیار کاربردی در محیط‌های غیرخطی اپتیکی رخ می‌دهد که از جمله‌ی این پدیده‌ها تولید هماهنگ دوم و فرکانس مجموع است که در این رساله به طور خاص به الگوی پراکندگی این دو پدیده‌ برای اشکال با شکل دلخواه اشاره شده است که برای بیان بهتر این موضوع ابتدا اپتیک غیرخطی به صورت مختصر توضیح داده شده است و از آنجایی که برای بدست آوردن الگوی پراکندگی نیازمند محاسبه شدت هستیم و برای محاسبه شدت پراکندگی نیازمند پذیرفتاری موثر هستیم. بعد از بیان اپتیک غیرخطی پذیرفتاری موثر شرح داده شده است و سپس وارد مسئله اصلی که بیان الگوی پراکندگی است شده‌ایم.

فصل اول: اپتیک غیرخطی

مقدمه:

اگر تمامی پدیده‌های فیزیکی اطراف ما خطی بودند، هم فیزیک خسته کننده بود و هم زندگی بدون مشاهده بسیاری جذابیت‌ها سپری می‌شد. خوشبختانه ما در یک دنیای غیرخطی زندگی می‌کنیم. البته به خاطر داشته باشیم که همان‌طور که خطی بودن فیزیک را جذاب می‌کند غیرخطی بودن نیز فیزیک را زیباتر می‌کند]1[.

پدیده‌های اپتیک خطی در محیط خطی رخ می‌دهند و در مقابل آن پدیده‌های اپتیک غیرخطی در محیط غیرخطی رخ می‌دهند اگر ویژگی‌های اصلی این دو محیط به دنبال هم بیان شوند به درک بهتری راجع به محیط غیرخطی خواهیم رسید. به همین علت ما در اینجا پس از بیان تاریخچه توضیح مختصری راجع به این دو محیط می‌دهیم و سپس به صورت تخصصی‌تر وارد مباحث مربوط به اپتیک غیرخطی می‌شویم.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید.



:: بازدید از این مطلب : 99
|
امتیاز مطلب : 1
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : چهار شنبه 9 تير 1395 | نظرات ()